United States Patent

US009483477B2

(12) (10) Patent No.: US 9,483,477 B2
Francis et al. 45) Date of Patent: Nov. 1, 2016
(54) AUTOMATED DATA INTAKE SYSTEM 7,058,615 B2 6/2006 Yao
7,584,460 B2* 9/2009 Broberg, III GOG6F 17/50
— . 716/135
(71) Applicant: SAS Institute Inc., Cary, NC (US) §.201,505 B2* 102012 Hursey ... HO4N 7/173 18
. . 726/27
(72) Inventors: (ngl)leé\’lfldogna lif;;{?sa gary, II:TIE 8,527,561 BL* 9/2013 Moody, II GOGF 17/30182
; Brian Oneal iles, Cary, 707/822
(US); Shrividya Sastry, Apex, NC 8,583,769 B1* 11/2013 Peterscccooouwne. GOGF 9/541
(US); David Lee Kuhn, Cave Creek, N . 709/221
AZ (US) 8,868,656 B2* 10/2014 Van Wie ..oooooooo... GO6F 9/4443
709/205
8,935,281 BI* 1/2015 Kale .occooovinn. GOGF 17/30106
(73) Assignee: SAS Institute Inc., Cary, NC (US) 707/772
8,972,992 B2 3/2015 Fletcher et al.
(*) Notice: Subject to any disclaimer, the term of this 8977717 B2 3/2015 Aarni et al.
patent is extended or adjusted under 35 8,978,036 B2 3/2015 Flelcher et al.
U.S.C. 154(b) by 0 days. (Continued)
(21) Appl. No.: 14/868,666 OTHER PUBLICATIONS
(22) Filed: Sep. 29, 2015 Tribble, D. R., Filename Pattern Matching, Dr. Dobb’s, Dec. 1,
1997, 13 pages, [retrieved on Aug. 26, 2016], Retrieved from the
(65) Prior Publication Data Internet: <URL:http://www.drdobbs.com/filename-pattern-match-
. o 1k
US 2016/0210297 A1 Jul. 21, 2016 ing/1844034397pgno=1>. .
(Continued)
Related U.S. Application Data Primary Examiner — Geofirey St Leger
(60) Provisional application No. 62/105,035, filed on Jan. (74) Attorney, Agent, or Firm — Bell & Manning, L1.C
19, 2015. (57) ABSTRACT
(51) Int. CL In a system a.utomatically processing data from a first
GO6F 17/30 (2006.01) computing d.ewce for use on a second computing device, a
registry file including a plurality of filename parameters is
(52) US. Cl. d. Each fil ter identifi tching fil
CPC ... GO6F 17/30076 (2013.01); GO6F 17/3019¢ ~ 'C2¢ "Ach ehame parameter identilies a matching lite-
(2013.01); GOGF 17/301 (2013.01) name pattern, an extract script indicator, and a read file
. . L ’ indicator. The extract script indicator indicates an extract
(8) gl;lcd of Clasgl(‘)ig;tllo 711/380%37?11 GOGE 17/301: GOGE script for a file having a filename that matches the matching
"""""" ’ 17’ 130106 filename pattern. The read file indicator indicates how to
g lication file f et h hist read the file having the filename that matches the matching
ce application ftle for compiete search hstory. filename pattern. One parameter of the plurality of filename
(56) References Cited parameters is selected by matching a filename of a source

U.S. PATENT DOCUMENTS

5,511,186 A * 4/1996 Carhart GO6F 17/30566
6,208,990 Bl 3/2001 Suresh et al.

6,651,062 B2 11/2003 Ghannam et al.

6,708,189 B1* 3/2004 Fitzsimons GO6F 17/30569

Create calendar control table
506

_——Tias an expected recelpt~~~__Y /"

e
-~ tored? 612 o
~__F o
S

T __timer expired? 608 __—" A
e
N e T~
=
Scan for feceint of new source. — expected? 820
T o
ﬂdai 610 —
T T
N_——" Newsource data "~

file to the matching filename pattern of the one parameter.
The associated extract script is selected and used to read data
from the source file using the associated read file indicator
and the read data is output to a different file and in a different
format.

30 Claims, 11 Drawing Sheets

S ———

A

o ey
— ~— < Compressed?622 Decompress source file 624
— -

Selected source file

N

® i
e

‘Store source data 10 archive
location 514

i Select source file from source

= [Meatcha to intake regist — —_—
fatch flename (o intake regisiry |, - Metchfoung7619
information 618 — //
T
(i) i ——
.

data 616 i

US 9,483,477 B2

Page 2
(56) References Cited 2011/0282894 Al* 11/2011 Broussard ... GOG6F 17/30106
707/769
U.S. PATENT DOCUMENTS 2012/0109937 Al 5/2012 Liensberger et al.
2013/0198201 Al* 82013 Fukuda GO6F 17/30321
2001/0002470 A1* 5/2001 Inohara GOGF 17/30076 707/741
2002/0171546 A1* 11/2002 EVADS oevvrooeesorn, GO6F 21/554 2014/0280401 Al1* 9/2014 Arai ..o GO6F 17/30076
340/540 _ 707/827
2003/0101167 A1* 5/2003 Berstis GO6F 17/30067 2014/0337429 Al 11/2014 Asenjo et al.
2003/0163508 Al* 82003 Goodman ... GO6F 8/67 2015/0039651 Al 2/2015 Kinsely et al.
718/100 2015/0040025 Al 2/2015 Deklich et al.
2003/0172094 Al* 9/2003 Lauria GO6F 17/30117 2015/0063129 Al 3/2015 Blasinski
2004/0073570 Al* 4/2004 Janakiraman . GO6F 21/6254 2015/0205834 Al* 7/2015 Keeton GO6F 17/301
2006/0025962 Al* 2/2006 Ma ..ccovvovrcrvrre.. G06Q 10/10 707/714
702/182 2015/0356094 Al* 12/2015 Gorelik GO6F 17/30076
2006/0248009 Al* 11/2006 Hicksccoccovvvennc... G06Q 20/00 707/748
705/40
2007/0124547 Al* 5/2007 Bedi ..ccovvvoveee... GO6F 3/0613
e 711/154 OTHER PUBLICATIONS
2008/0005450 Al* 1/2008 Bangalore GO6F 12/0246 _ o _
711/103 Giger, K. et al., XPath filename expansion in a Unix shell, Pro-
2008/0162511 Al* 7/2008 Theobald GO6F 17/30106 ceedings of the 15th international conference on World Wide Web,
2008/0306987 Al* 12/2008 Chen . GOG6F 11/1471 : .
2006, pp. 863-864, [retrieved on Aug. 26, 2016], Retrieved from th
2009/0319785 A1* 12/2009 WANE wcovvrrrrerrerereron GOGF 21/10 - PP ; [retrieved on 8 |- Retrieved from the
713/165 Internet: <URL:http://dl.acm.org/>.
2010/0088674 Al* 4/2010 Della-Libera GO6F 17/2705
717/114 * cited by examiner

U.S. Patent Nov. 1, 2016 Sheet 1 of 11 US 9,483,477 B2

116

Fig. 1

US 9,483,477 B2

Sheet 2 of 11

Nov. 1, 2016

U.S. Patent

aoeuaiul INAINGD

1 Z J0sse00.d

¢ bid
= 91¢ —
vam__wmmmm: 1 (s)al uondiossp Emnvorom:om
: ’ noAe| ele(
b A A
A
rAY4 80¢ wnipawl
uonesidde e a|qepeal
peoldn Jomndwo)
A
A
¥02 — 90¢ @oepayul

UOEDIUNWILLIOD

20¢Z 8oeusiul
induy

Y

$01 9oirep
axelul ejeqg

US 9,483,477 B2

Sheet 3 of 11

Nov. 1, 2016

D ¢ B4
(s)aly vonduosep
(s)ay} 1866 § 1noke| ereq ejep a2inog
0z¢ 81¢ 9r€ (s)aly vie
(s)a)i snie1s B1ep pajoesxyg Ansibal aveyu| 8|} uonenbByuon
t t f f
cle 80¢ winipawi
uoeojidde le—» a|qepeai | 801 waysAhs
e eleq indwon "l sseooe ele
A
\4
¥0¢ 90€ soepajUl 201 @dlnep

soeualUl INdINO

01 € J0ss8204d

UOIIROILINWILIOYD

A 4

Z0€ @oepaUl
induj

A

82.n0s ejed

v

90| weishs
e1Rp PoISOH

U.S. Patent

US 9,483,477 B2

Sheet 4 of 11

Nov. 1, 2016

U.S. Patent

{ B4

0v
aoepaiul INdINO

Z1¥ uoneoidde
ssaooe eje(

A

80P wnipaw
e|gepea.
Jeindwon

h

A

[T J0ss8001d

O0¥ @oepa}UI
UoneUNWWOo.D

Z0¥ eoeau
nduj

4

h

v

901 welsAs
elep pajsoH

A4

¥01 eolnep
e ejeq

US 9,483,477 B2

Sheet 5 of 11

Nov. 1, 2016

U.S. Patent

G ‘614

8l€
ejep pajoesxy

Z1G uoneoidde

1s0y

eleq

4

h

05
adepaul INAINO

80§ wnipaw

o|ge

peal

Jeindwiod

h

A

1G 10SS890.1d

90G 2oelaU
UONEOIUNLIWOYD

Z0G aoepLul
nduj

A

v

301 welshs
ssaooe eje(

v

01 9onep
el eleQ

US 9,483,477 B2

Sheet 6 of 11

Nov. 1, 2016

U.S. Patent

19 {Ppunoj ysen

919 ejep
80IN0S WO 8|y 82IN0S 108[8S

A

719 uoneoo|
BAIYDIE O} BlEp 82IN0S 310ig

}

819 UONBUWLIOJUI

AnsiBai axelul 01 aweus|y UYoiepy

eg ‘B4

29 2|} 82In0s ssa4dwiosa

029 ¢ pajoadxa
3|} B0INOS PBYIBILS

729 ¢ possalduwion

79 (s)o)§ 8ainos 1dAioa(g

929 ¢ paydiious

Z£9 oy Jobbi) peay

0£0 Juasald sjiy JobbL

Z19 ipalols
Elep 924N0S MON

019 elep
824N0S Mau 0 1diB08l J0f UBDg

809 i{pendxs Jawn
ydieoas pejoadxs ue sey

A

P
4

909
8|qE] [0ALIGD JBpUS|RD 818D

!

Y09 9|ge} [04U0D uni Sjesl)

f

209 (s)aly Ansibal axejul peay

1

009 8|y uonenbyuod peay

US 9,483,477 B2

Sheet 7 of 11

Nov. 1, 2016

U.S. Patent

$G9 sely pauoned pusddy

259 ¢sely pauoniied

4
5.
P

840 1duos penxe
wioysno Buisn ejep 19enxg

9%9 (£,1dL0S JOBIIXS WOISND

0Gg loyoesxe
}nejop Buisn elep 1oeixg

Zv9 09 uesaud ajy
3|y uonduosap JnoAe| elep pesy AHA uonduosap 1noke| _1eQg
/
ac9g Aue
§1 ‘wesboud sson0.d-aid aynoexy
A
a9 @_u._ 7€G 4, punoy yoie
@ v 7EG ¢ punoy yojep

779 aly
uonduosap INoAe| ejep ajeasn

§¢g uoleuoUl
Aiisibal ayelul 01 SWBUS|Y YoIBW

f

€S 9|i 92In0s passsidwioss
@Iv €9 Sl p p

WO} 8|1 JO 3]if 80IN0S 109[88

US 9,483,477 B2

Sheet 8 of 11

Nov. 1, 2016

U.S. Patent

09 "bi4

$80 909 ucnesado 0} 10 uUoHE0|
Buyjeo seye uonesado 0} uiNsy

f

780 [Iewie UOEoYoU JOUS puas

_ 1

089 o] snjejs Jose ajepdn

079 éussaud /

8|1} 82IN0S Iayjouy

t/9 e|geoydde
11 ‘ajge) Jepusieo ayepdn

219 ¢34
82UN0s passaesdwiossp
Wi} 9|1} Jeyjou

xa

079 Aue Ji ‘(s)oly smejs ajepdn

i

899 Aue Ji
‘wesboud ssaoosd-isod apnoaxy

799 (s)ise} Ajjjenb ejep uuoyed

Y

299 i(shsay Ayjenb ejeg

8G9
(s)ise} Ayibajul ep wiopad

960 ¢(shsa} Aubajul ejeq

Sheet 9 of 11

Nov. 1, 2016

U.S. Patent

OLL

90/ slnpow
Buroday

L b4

&

¥0. 8inpow
LIONORJIXS

O 9y Bo

g ey 607

19O3YO 314

Vol b0

uopeInByuog

FLE 8l

10661}

uopduosep
inofe| eleq

....J\...ﬂNﬂ
ejep 90IN0S

US 9,483,477 B2

Sheet 10 of 11

Nov. 1, 2016

U.S. Patent

g ‘b1

"7els3gl Z11s3g 3 wnu yisuafeT vaeidnes] oty ajduey
‘ze1s39| 21153y 3 winu aseqiRaymlyT wodwey oy aydwey
'cels3gl ¢1is3d 3 wnu IVETEYY) 35 waaydwes] oy 9jdwieg]
(TT-€)3DNVHENI 04 CELS3d| 'ZTiS3d 3 winu siapuijAdle yajduwes| oyl ajdiseg
3dALVIVA 0G "7e1s3d| ZTiS3Y 3 winy azisauiduglg yajdwey oy ajdwey
"TIVINNOD| '8¥YT10d 3 wnu 2210AU||L yajdutes oy ajdwey
FdALYLIVA OQ| TTIVININOD| '8HVT10Q 8 wnu dYSIAIS wyejdwey ajy sjdieg
00°SS 00°5S S Jeyd uied januqls paajdwes ajy sjduiey
(,¥SN.;,pd0o4n3 e1sy =1SH) LSNINI 00095 00°9$ 9 JETR wsugly xodwes oy ojduied
00°95 00°9% E] Jeyd dAtle paRjdwes] ofy oduwieg
TINNLON 0Q|00'6€S 00'6€S 6E Jeyd {apoiAlfz wo|dwey apy ojduweg
(ew o0 €1$ 00°€1S £1 1ey) et waojdwey oy ojdwes|
ISI7MEW JeI"IXB1Pe)dNN00T DAl SYYHD 0d
‘zels3gl ziisad g wnuf (AemysiH)odil Aemysid[cT pasjdwey afy ojduwes
HdIA
CELS3d| 'CTis3d 3 wnu {AD)adn A frt wyojdwey oy sjduweg
SdiA
(005-££)3DONVYXT O] ‘zels3g| z1is3s 8 wny JamodasioH|oT Pajdwes af) sjdwes]
ajni bp 10B4p®[jewdoyul | jewdoy [uomsod | yidus adAy 1308} pidYy Sweu | Jopso usoped | uoududssp
piey| ey PRy PRy PRy 19e41%9) pRYT| payT| A wenxs By 12eMXS
penxs| enxal peaxg| pesxa| 1penxd 1oexa| 3BNXS

/

008

US 9,483,477 B2

Sheet 11 of 11

Nov. 1, 2016

U.S. Patent

— 006

US 9,483,477 B2

1
AUTOMATED DATA INTAKE SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of 35 U.S.C.
§119(e) to U.S. Provisional Patent Application No. 62/105,
035 filed Jan. 19, 2015, the entire contents of which are
hereby incorporated by reference.

BACKGROUND

Hosted systems provide a way for customers to benefit
from the value of software without the burden of infrastruc-
ture setup, support, and monitoring. One of the biggest
hurdles of hosting is the transfer and intake of data into a
hosted environment. Customers typically perform many
steps such as decryption of the data, decompression of the
data, extraction of the data for use, and movement/registra-
tion to make the data accessible to the hosted tools for use
by the customers.

SUMMARY

In an example embodiment, a computer-readable medium
that automatically processes data received from a first com-
puting device for use in a different format on a second
computing device is provided. The computer-readable
medium has stored thereon computer-readable instructions
that when executed by a computing device, cause the
computing device to support the automatic processing. A
registry file is automatically read. The registry file includes
a plurality of filename parameters, wherein each filename
parameter of the plurality of filename parameters identifies
a matching filename pattern. An extract script indicator and
a read file indicator are associated with each filename
parameter. The extract script indicator indicates an extract
script for a file having a filename that matches the matching
filename pattern. The read file indicator indicates how to
read the file having the filename that matches the matching
filename pattern. Whether unprocessed source data is stored
in a predefined directory is automatically determined. Based
upon determining that unprocessed source data is stored in
the predefined directory, a source file is automatically
selected from the unprocessed source data; one parameter of
the plurality of filename parameters read from the registry
file is automatically selected by matching a filename of the
selected source file to the matching filename pattern of the
one parameter; an extract script is automatically selected
based on the extract script indicator associated with the
selected one parameter; data from the selected source file is
automatically read using the selected extract script and using
the read file indicator associated with the selected one
parameter; and the read data is automatically output to a
different file than the source file and in a different format
than a format used in the source file.

In another example embodiment, a system is provided.
The system includes, but is not limited to, a processor and
a computer-readable medium operably coupled to the pro-
cessor. The computer-readable medium has instructions
stored thereon that, when executed by the processor, cause
the system to automatically process data received from a
first computing device for use in a different format on a
second computing device.

In yet another example embodiment, a method of auto-
matically processing data received from a first computing
device for use in a different format on a second computing
device is provided.

10

15

20

25

30

35

40

45

50

55

60

65

2

Other principal features of the disclosed subject matter
will become apparent to those skilled in the art upon review
of the following drawings, the detailed description, and the
appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Tustrative embodiments of the disclosed subject matter
will hereafter be described referring to the accompanying
drawings, wherein like numerals denote like elements.

FIG. 1 depicts a block diagram of a data intake system in
accordance with an illustrative embodiment.

FIG. 2 depicts a block diagram of a data source device of
the data intake system of FIG. 1 in accordance with an
illustrative embodiment.

FIG. 3 depicts a block diagram of a data intake device of
the data intake system of FIG. 1 in accordance with an
illustrative embodiment.

FIG. 4 depicts a block diagram of a data access device of
the data intake system of FIG. 1 in accordance with an
illustrative embodiment.

FIG. 5 depicts a block diagram of a data host device of the
data intake system of FIG. 1 in accordance with an illustra-
tive embodiment.

FIGS. 6a, 6b, and 6¢ depict a flow diagram illustrating
examples of operations performed by the intake device of
the data intake system of FIG. 1 in accordance with an
illustrative embodiment.

FIG. 7 depicts a block diagram of a data intake application
of the data intake device of FIG. 3 in accordance with an
illustrative embodiment.

FIG. 8 depicts a content of a data layout description file
in accordance with an illustrative embodiment.

FIG. 9 depicts a content of a default custom registry file
in accordance with an illustrative embodiment.

DETAILED DESCRIPTION

Referring to FIG. 1, a block diagram of a data intake
system 100 is shown in accordance with an illustrative
embodiment. In an illustrative embodiment, data intake
system 100 may include a data source device 102, a data
intake device 104, hosted data system 106, data access
system 108, and a network 110. Data source device 102
provides source data to data intake device 104. In an
illustrative embodiment, data intake device 104 receives the
source data and automatically processes the source data into
a hosted environment supported by hosted data system 106.
One or more computing device of data access system 108
may access the data stored in the hosted environment. For
example, hosted data system 106 may provide analytic
results from the data to a user of data access system 108
requesting access to the hosted data.

The source data sent from data source device 102 may be
generated by a sensor, may be generated or captured in
response to occurrence of an event or a transaction such as
a sale of a product or a service, may be generated by a device
such as in response to an interaction by a user with the
device, etc. As used herein, the source data may include any
type of content represented in any computer-readable format
such as binary, alphanumeric, numeric, string, markup lan-
guage, etc. The source data may be organized using delim-
ited fields, comma separated fields, fixed width fields, using
a SAS® dataset, etc. The SAS dataset may be a SAS® file
stored in a SAS® library that a SAS® software tool creates
and processes. The SAS data set contains data values that are
organized as a table of observations (rows) and variables

US 9,483,477 B2

3

(columns) that can be processed by one or more SAS
software tools. Example SAS software tools include Base
SAS, SAS® LASR™, SAS®/CONNECT, SAS® Scalable
Performance Data Engine, SAS® Metadata, SAS® Visual
Analytics, all of which are developed and provided by SAS
Institute Inc. of Cary, N.C., USA. The content of the source
data may include textual information, graphical information,
image information, audio information, numeric information,
etc. that further may be encoded using various encoding
techniques as understood by a person of skill in the art.

Each of data source device 102, data intake device 104,
hosted data system 106, and data access system 108 may be
composed of one or more discrete devices in communication
through network 110. For example, hosted data system 106
may implemented as a series of blades as understood by a
person of skill in the art. Hosted data system 106 and data
intake device 104 may communicate using a message pass-
ing interface (MPI), which is a language-independent com-
munications protocol that may be used to program commu-
nication between parallel computers such as hosted data
system 106. Either or both of point-to-point and collective
communication may be supported by the MPI. Hosted data
system 106 and data intake device 104 may be configured
similarly in terms of both software and hardware though this
may or may not be required. In an alternative embodiment,
hosted data system 106 and data intake device 104 may be
implemented in the same computing device, may be inte-
grated, or may be separate systems.

Hosted data system 106 may perform an analytic task on
the hosted data that is created from the source data and that
is stored in memory accessible by hosted data system 106.
Hosted data system 106 may return the results to data access
system 108. In addition, hosted data system 106 may ensure
that the source data sent from data source device 102 is
well-formatted for analytic use and is maintained. Data
maintenance may include appending new, unprocessed data
to an existing data set and expiring data after it is no longer
required.

Network 110 may include one or more networks of the
same or different types. Network 110 can be any type of
wired and/or wireless public or private network including a
cellular network, a local area network, a wide area network
such as the Internet, etc. Network 110 further may comprise
sub-networks and consist of any number of devices.

Though referenced as a device, data source device 102
may include one or more integrated computing devices that
may be organized into subnets. Data source device 102 may
include any number and any combination of form factors of
computing devices such as a laptop, a desktop, a smart
phone, a personal digital assistant, an integrated messaging
device, a tablet computer, etc. For illustration, FIG. 1
represents data source device 102 as a server computer. In
general, a server computer may include faster processors,
additional processors, more disk memory, and more random
access memory (RAM) than a client computer as understood
by a person of skill in the art. Source device 102 sends and
receives signals through network 110 to/from data intake
device 104. Data source device 102 may communicate using
various transmission media that may be wired and/or wire-
less as understood by those skilled in the art.

Referring to FIG. 2, a block diagram of data source device
102 is shown in accordance with an illustrative embodiment.
Data source device 102 may include an input interface 202,
an output interface 204, a communication interface 206, a
computer-readable medium 208, a processor 210, an upload
application 212, source data 214, one or more data layout
description files 216, and one or more trigger files 218.

10

15

20

25

30

35

40

45

50

55

60

65

4

Fewer, different, and additional components may be incor-
porated into data source device 102.

Input interface 202 provides an interface for receiving
information from the user for entry into data source device
102 as understood by those skilled in the art. Input interface
202 may interface with various input technologies including,
but not limited to, a keyboard, a mouse, a display, a track
ball, a keypad, one or more buttons, etc. to allow the user to
enter information into data source device 102 or to make
selections presented in a user interface displayed on the
display. The same interface may support both input interface
202 and output interface 204. For example, a display com-
prising a touch screen both allows user input and presents
output to the user. Data source device 102 may have one or
more input interfaces that use the same or a different input
interface technology. The input interface technology further
may be accessible by data source device 102 through
communication interface 206.

Output interface 204 provides an interface for outputting
information for review by a user of data source device 102.
For example, output interface 204 may interface with vari-
ous output technologies including, but not limited to, the
display, a speaker, a printer, etc. Data source device 102 may
have one or more output interfaces that use the same or a
different interface technology. The output interface technol-
ogy further may be accessible by data source device 102
through communication interface 206.

Communication interface 206 provides an interface for
receiving and transmitting data between devices using vari-
ous protocols, transmission technologies, and media as
understood by those skilled in the art. Communication
interface 206 may support communication using various
transmission media that may be wired and/or wireless. Data
source device 102 may have one or more communication
interfaces that use the same or a different communication
interface technology. For example, data source device 102
may support communication using an Ethernet port, a Blu-
etooth antenna, a telephone jack, a USB port, etc. Data and
messages may be transferred between data source device
102 and data intake device 104 using communication inter-
face 206.

Computer-readable medium 208 is an electronic holding
place or storage for information so the information can be
accessed by processor 210 as understood by those skilled in
the art. Computer-readable medium 208 can include, but is
not limited to, any type of random access memory (RAM),
any type of read only memory (ROM), any type of flash
memory, etc. such as magnetic storage devices (e.g., hard
disk, floppy disk, magnetic strips, . . .), optical disks (e.g.,
compact disc (CD), digital versatile disc (DVD), .. .), smart
cards, flash memory devices, etc. Data source device 102
may have one or more computer-readable media that use the
same or a different memory media technology. Data source
device 102 also may have one or more drives that support
the loading of a memory media such as a CD or DVD, an
external hard drive, etc. One or more external hard drives
further may be connected to data source device 102 using
communication interface 206.

Processor 210 executes instructions as understood by
those skilled in the art. The instructions may be carried out
by a special purpose computer, logic circuits, or hardware
circuits. Processor 210 may be implemented in hardware
and/or firmware. Processor 210 executes an instruction,
meaning it performs/controls the operations called for by
that instruction. The term “execution” is the process of
running an application or the carrying out of the operation
called for by an instruction. The instructions may be written

US 9,483,477 B2

5

using one or more programming language, scripting lan-
guage, assembly language, etc. Processor 210 operably
couples with input interface 202, with output interface 204,
with communication interface 206, and with computer-
readable medium 208 to receive, to send, and to process
information. Processor 210 may retrieve a set of instructions
from a permanent memory device and copy the instructions
in an executable form to a temporary memory device that is
generally some form of RAM. Data source device 102 may
include a plurality of processors that use the same or a
different processing technology.

Upload application 212 performs operations associated
with uploading source data 214 to data intake device 104.
Upload application 212 may further perform operations
associated with uploading the one or more data layout
description files 216 and the one or more trigger files 218 to
data intake device 104. The operations may be implemented
using hardware, firmware, software, or any combination of
these methods. Referring to the example embodiment of
FIG. 2, upload application 212 is implemented in software
(comprised of computer-readable and/or computer-execut-
able instructions) stored in a tangible, non-transitory com-
puter-readable medium 208 and accessible by processor 210
for execution of the instructions that embody the operations
of upload application 212. Upload application 212 may be
written using one or more programming languages, assem-
bly languages, scripting languages, etc.

Upload application 212 may be implemented as a Web
application. For example, upload application 212 may be
configured to receive hypertext transport protocol (HTTP)
responses and to send HTTP requests. The HTTP responses
may include web pages such as hypertext markup language
(HTML) documents and linked objects generated in
response to the HTTP requests. Each web page may be
identified by a uniform resource locator (URL) that includes
the location or address of the computing device that contains
the resource to be accessed in addition to the location of the
resource on that computing device. The type of file or
resource depends on the Internet application protocol such
as the file transfer protocol, HTTP, H.323, etc. The file
accessed, for example, may be a simple text file, an image
file, an audio file, a video file, an executable, a common
gateway interface application, a Java applet, an extensible
markup language (XML) file, or any other type of file
supported by HTTP. For illustration, Upload application 212
may be implemented as a file transfer protocol (FTP) upload,
a secure FTP (SFTP) upload, a Web upload, etc.

Referring to FIG. 3, a block diagram of data intake device
104 is shown in accordance with an example embodiment.
Though referenced as a device, data intake device 104 may
include one or more integrated computing devices that may
be organized into subnets. Data intake device 104 may
include any number and any combination of form factors of
computing devices such as a laptop, a desktop, a smart
phone, a personal digital assistant, an integrated messaging
device, a tablet computer, a wearable device, etc. For
illustration, FIG. 1 represents data intake device 104 as a
server computer. Data intake device 104 may include a
second input interface 302, a second output interface 304, a
second communication interface 306, a second computer-
readable medium 308, a second processor 310, source data
322, one or more data layout description files 324, one or
more trigger files 326, a data intake application 312, a
configuration file 314, one or more intake registry files 316,
extracted data 318, and one or more status files 320. Fewer,
different, and additional components may be incorporated
into data intake device 104. Extracted data 318 may be

20

30

35

40

45

50

6

distributed to hosted data system 106 instead of or in
addition to storage in second computer-readable medium
308.

Source data 322 stored in second computer-readable
medium 308 may be a copy of source data 214 stored in
computer-readable medium 208 after receipt from data
source device 102. The one or more data layout description
files 324 stored in second computer-readable medium 308
may be a copy of the one or more data layout description
files 216 stored in computer-readable medium 208 after
receipt from data source device 102. The one or more trigger
files 326 stored in second computer-readable medium 308
may be a copy of the one or more trigger files 218 stored in
computer-readable medium 208 after receipt from data
source device 102.

Second input interface 302 provides the same or similar
functionality as that described with reference to input inter-
face 202 of data source device 102 though referring to data
intake device 104. Second output interface 304 provides the
same or similar functionality as that described with refer-
ence to output interface 204 of data source device 102
though referring to data intake device 104. Second commu-
nication interface 306 provides the same or similar func-
tionality as that described with reference to communication
interface 206 of data source device 102 though referring to
data intake device 104. Data and messages may be trans-
ferred between data intake device 104 and data source
device 102, hosted data system 106, and/or data access
system 108 using second communication interface 306.
Second computer-readable medium 308 provides the same
or similar functionality as that described with reference to
computer-readable medium 208 of data source device 102
though referring to data intake device 104. Second processor
310 provides the same or similar functionality as that
described with reference to processor 210 of data source
device 102 though referring to data intake device 104.

Data intake application 312 performs operations associ-
ated with processing source data 322 into extracted data 318
that may be labeled hosted data and that is accessible by data
access system 108 using hosted data system 106. Data intake
application 312 may use information contained in the one or
more data layout description files 324, the one or more
trigger files 326, configuration file 314, and the one or more
intake registry files 316 to convert source data 214 to
extracted data 318. Data intake application 312 may write
status data to the one or more status files 320 to maintain an
audit trail and log associated with the status of the process-
ing.

Referring to the example embodiment of FIG. 3, data
intake application 312 is implemented in software (com-
prised of computer-readable and/or computer-executable
instructions) stored in second tangible, non-transitory com-
puter-readable medium 308 and accessible by second pro-
cessor 310 for execution of the instructions that embody the
operations of data intake application 312. Data intake appli-
cation 312 may be written using one or more programming
languages, assembly languages, scripting languages, etc.
Data intake application 312 may be implemented as a Web
application.

Referring again to FIG. 1, data access system 108 may
include one or more computing devices that may be orga-
nized into subnets. Data access system 108 may include any
number and any combination of form factors of computing
devices such as a laptop 120, a desktop 122, a smart phone
124, a personal digital assistant, an integrated messaging
device, a tablet computer, etc.

US 9,483,477 B2

7

Referring to FIG. 4, a block diagram of a data access
device 400 of data access system 108 is shown in accordance
with an example embodiment. Data access device 400 is an
example computing device of data access system 108. Data
access device 400 may include a third input interface 402, a
third output interface 404, a third communication interface
406, a third computer-readable medium 408, a third proces-
sor 410, and a data access application 412. Fewer, different,
and additional components may be incorporated into data
access device 400.

Third input interface 402 provides the same or similar
functionality as that described with reference to input inter-
face 202 of data source device 102 though referring to data
access device 400. Third output interface 404 provides the
same or similar functionality as that described with refer-
ence to output interface 204 of data source device 102
though referring to data access device 400. Third commu-
nication interface 406 provides the same or similar func-
tionality as that described with reference to communication
interface 206 of data source device 102 though referring to
data access device 400. Data and messages may be trans-
ferred between data access device 400 and data intake
device 104 and/or hosted data system 106 using third
communication interface 406. Third computer-readable
medium 408 provides the same or similar functionality as
that described with reference to computer-readable medium
208 of data source device 102 though referring to data access
device 400. Third processor 410 provides the same or
similar functionality as that described with reference to
processor 210 of data source device 102 though referring to
data access device 400.

Data access application 412 performs operations associ-
ated with accessing (i.e., querying, adding to, deleting from,
modifying) extracted data 318 that may be stored at data
intake device 104 and/or hosted data system 106. For
illustration, data access application 412 may provide analy-
sis, visualization, or other processing of extracted data 318
depending on the content of extracted data 318 as under-
stood by a person of skill in the art.

Referring to the example embodiment of FIG. 4, data
access application 412 is implemented in software (com-
prised of computer-readable and/or computer-executable
instructions) stored in third computer-readable medium 408
and accessible by third processor 410 for execution of the
instructions that embody the operations of data access
application 412. Data access application 412 may be written
using one or more programming languages, assembly lan-
guages, scripting languages, etc. Data access application 412
may be implemented as a Web application.

Referring again to FIG. 1, hosted data system 106 may
include one or more computing devices that may be orga-
nized into subnets. Hosted data system 106 may include any
number and any combination of form factors of computing
devices. For illustration, FIG. 1 represents hosted data
system 106 with a first server computer 112, a second server
computer 114, a third server computer 116, and a fourth
server computer 118. The computing devices of hosted data
system 106 send and receive signals through network 110
to/from another of the one or more computing devices of
hosted data system 106, to/from data intake device 104,
and/or to/from data access system 108. The one or more
computing devices of hosted data system 106 may commu-
nicate using various transmission media that may be wired
and/or wireless as understood by those skilled in the art. For
illustration, hosted data system 106 may implement a multi-
node Hadoop® cluster, form a grid of computers storing
extracted data 318 as a cube of data, implement a plurality

10

15

20

25

30

35

40

45

50

55

60

65

8

of cloud computers using cloud computing to store extracted
data 318, implement the SAS® LLASR™ Analytic Server
that loads extracted data 318 into an in-memory server,
implement another type of SAS server solution, implement
another hosted data solution offered by another vendor such
as the SAP Hana Cloud Platform offered by SAP SE
headquartered in Walldorf, Germany, Oracle® Database
In-Memory offered by Oracle Corporation of Redwood
Shores, Calif., USA, implement another type of in-memory
server, a data store, data lake, etc.

Referring to FIG. 5, a block diagram of a data host device
500 of hosted data system 106 is shown in accordance with
an example embodiment. Data host device 500 is an
example computing device of hosted data system 106. Data
host device 500 may include a fourth input interface 502, a
fourth output interface 504, a fourth communication inter-
face 506, a fourth computer-readable medium 508, a fourth
processor 510, and a data host application 512. Fewer,
different, and additional components may be incorporated
into data host device 500.

Fourth input interface 502 provides the same or similar
functionality as that described with reference to input inter-
face 202 of data source device 102 though referring to data
host device 500. Fourth output interface 504 provides the
same or similar functionality as that described with refer-
ence to output interface 204 of data source device 102
though referring to data host device 500. Fourth communi-
cation interface 506 provides the same or similar function-
ality as that described with reference to communication
interface 206 of data source device 102 though referring to
data host device 500. Data and messages may be transferred
between data host device 500 and data intake device 104
and/or data access system 108 using fourth communication
interface 506. Fourth computer-readable medium 508 pro-
vides the same or similar functionality as that described with
reference to computer-readable medium 208 of data source
device 102 though referring to data host device 500. Fourth
processor 510 provides the same or similar functionality as
that described with reference to processor 210 of data source
device 102 though referring to data host device 500.

Data host application 512 performs operations associated
with supporting access (i.e., querying, adding to, deleting
from, modifying) to extracted data 318 by a computing
device, such as data access device 400, of data access system
108. For illustration, data host application 512 may provide
analysis, visualization, or other processing of extracted data
318 depending on the content of extracted data 318 as
understood by a person of skill in the art.

Referring to the example embodiment of FIG. 5, data host
application 512 is implemented in software (comprised of
computer-readable and/or computer-executable instructions)
stored in fourth computer-readable medium 508 and acces-
sible by fourth processor 510 for execution of the instruc-
tions that embody the operations of data host application
512. Data host application 512 may be written using one or
more programming languages, assembly languages, script-
ing languages, etc. Data host application 512 may be imple-
mented as a Web application.

Referring to FIGS. 6a, 6b, and 6c¢, example operations
associated with data intake application 312 of data intake
device 104 are described. Additional, fewer, or different
operations may be performed depending on the embodi-
ment. The order of presentation of the operations of FIG. 6
is not intended to be limiting. Although some of the opera-
tional flows are presented in sequence, the various opera-
tions may be performed in various repetitions, concurrently,
and/or in other orders than those that are illustrated. As

US 9,483,477 B2

9

further understood by a person of skill in the art, various
operations may be performed in parallel, for example, using
a plurality of threads or a plurality of processors such a
second processor 310.

Data intake application 312 may include one or more
modules written in the same or different languages that may
be executed or run by the same or different processors. For
example, in the illustrative embodiment of FIG. 7, data
intake application 312 may include a file checker module

10

-c¢ <configuration file 314>;

-f force restart, ignoring any checkpoint/restart informa-
tion; and

-h help on command options.

Execution of data intake application 312 may spawn file
checker module 700 and one or more of calendar module
702, extraction module 704, and reporting module 706. For
illustration, file checker module 700 may be written in the
PERL scripting language; whereas, calendar module 702,
extraction module 704, and reporting module 706 may be

10 :

700, a calendar module 702, an extraction module 704, and written in Base SAS. . . .
a reporting module 706. File checker module 700, calendar . File checker module 700 looks for ﬁle?s I an ncoming
. . directory. If there are one or more files available, file checker

module 702, extraction module 704, and reporting module . .
706 of data intak lication 312 i i d module 700 moves the one or more files from the incoming
ol data intake application may use intormation rea directory to an archive directory and logs this occurrence
from the one or more data layout description files 324, the 15 jnio status file 320d. File checker module 700 verifies
one or more t.rlgger ﬁle.s 326, configuration file 314, and the whether the one or more files are expected, as discussed
one or more intake registry files 316 to convert source data further below. If the one or more files are expected, file
322 to extracted data 318. Control data 708 is used by checker module 700 moves the one or more files to an
extraction module 704 to convert source data 322 to un-archive directory after uncompressing and/or decrypting
extracted data 318. 20 the one or more files. The location of the various directories

Th il include a log il may be defined in configuration file 314.

e one or more status files 320 may include a log file A Calendar module 702 determines which of the one or
320a, a log file B 320, a log file C 320c, and a status ﬁle more files are due to be processed. A file of the one or more
320d. Log file A 320a and status file 3204 may be main- files may be a scheduled file or an ad hoc file. Calendar
tained by file checker module 700. Log file B 3205 may be ,; module 702 may also set-up control data 708 that includes
maintained by calendar module 702. Log file C 320¢ may be a calendar table for extract processing by extraction module
maintained by extraction module 704. Calendar module 702 704.] o
creates and maintains control data 708 as discussed further Extraction module 704 extracts all eligible files passed on
below. Status and/or error messages 710 may be created and by calendar module 702 into extr acte;d data 318 that may be

. . . in the form of output tables. Extraction module 704 can be
sent to message locations predefined in configuration file 30 . .
314 based on a type of the message as discussed further run in paralle.l with a number of parallel processes as defined
. p L g . in configuration file 314.
below. D.ata. intake a.pphcatlon 312 may b? restartable with Reporting module 706 reads log file A 320a, log file B
checkpoint information logged at each point. 3205, and log file C 320c¢ for errors and takes an action that
For illustration, data intake application 312 may be started 3 may be defined in configuration file 314. For example, status
using a command line function though other methods may agg/or error mes(siagqsh710 may fbg reported t?i an email
be used, such as double-clicking on an executable, conver- address associated with a user of data source device 102
. . and/or to an email address associated with a user of data
sion to a daemon process or service, etc. For example, a - - :
. £ data infak licati b . intake device 104 depending on the type of error.
matn program ol d ta intake application 31‘2‘ may be Wrmfffl Referring again to FIGS. 6a, 65, and 6¢, once started, in
in the PERL scripting l@guage and named data_ln.take.pl - 40 an operation 600, data intake application 312 reads configu-
An example command line may be defined as data_intake.pl ration file 314. For illustration, Table I below includes
[-c<config file>] [-f] [-h], where [] indicates optional illustrative configuration file variables that can be custom-
arguments: ized for a specific data source device 102.
TABLE 1
Variable Description
CUSTOMER An acronym for a customer is defined here.
PROJECT A name of a project is defined here.
CUSTOMERNAME A long name of the customer is defined here.
PROJECTNAME A long name of the project is defined here.
OPS_MAILTO An email address to send system error

CUST_MAILTO

HOMEDIR

TRANSPORT__DIR
TRANSPORT_ARCHIVE_ DIR
TRANSPORT_UNARCHIVE_DIR
TRANSPORT_INCOMING__ DIR

TRANSPORT_OUTGOING__DIR

SW_HOME

SW__CONF

SW__SASPGMS

notifications is defined here.

An email address to send data issue notifications
is defined here.

A home directory location is defined here.

A location of a transport directory is defined here.
A location of an archive directory is defined here.
A location of an un-archive directory is defined
here.

A location of an incoming directory is defined
here.

A location of an SFTP outgoing directory is
defined here.

A directory where data intake application 312 is
deployed is defined here. This may match
HOMEDIR

A location where configuration file 314 is stored
is defined here.

A location where SAS programs are stored is
defined here.

US 9,483,477 B2
11 12
TABLE I-continued

Variable

Description

SW__SASAUTOS

MODULES__ TO_ RUN

CALENDAR

EXTRACT

REPORT_ERROR

INITIAL__SETUP
CUSTOM_REG

GENERIC__REG

CPU_COUNT

LOGS_DIR
SAS_LOGS
AUDIT_LOGS
RUN_LOGS
LOG_CHANGE

COMPRESSION_PROGRAM

LATE_ TRIGGER__FILE

CHECKPT_FILE

RUNDIR

ARCHIVE__ENCRYPTED

DECRYPT_PGM

UNHANDLED_ ERRORS

ERROR__FORWARD

LATE__ALERT_EMAIL

LATE__ALERT_PAUSE
DATASPEC_ FILE

DATASPEC_DIR

DATASPEC_ARCHIVE__DIR

DATASPEC_ PROPERTIES

A location where SAS macros are stored is
defined here.

Modules to be run, separated by pipe(l) is
defined here. FILECHECKER should be
mentioned as a minimum for any meaningful
results. Other options are CALENDAR and
EXTRACT

A location of calendar module 702 is defined
here.

A location of extraction module 704 is defined
here.

A location of reporting module 706 is defined
here.

Setup code run only the first time is defined here.
A name and location of a custom intake registry
file of the one or more intake registry files 316 is
defined here. To turn OFF this registry, blank is
assigned to this variable.

A name and location of a generic intake registry
file of the one or more intake registry files 316 is
defined here. To turn OFF this registry, blank is
assigned to this variable.

A number of maximum parallel processes that
can be run is defined here. In general, this
variable should not exceed a maximum number
of available cores.

A main log file directory is defined here.

A SAS log file directory is defined here.

An audit log file directory is defined here.

A run log file directory is defined here.

A frequency of log file roll over for audit logs is
defined here. Accepted values are MONTHLY,
DAILY is defined here. E.g. if MONTHLY is
specified, the same log file is used for the entire
month.

An indicator of a compression program used to
compress source data 322 in the archive
directory if source data 322 is uncompressed
when sent to the incoming directory is defined
here. Accepted values may include zip, gz, gzip,
tar, tar.gz, tar.bz2, where zip = ZIP, gz and gzip =
GZIP, tar = TAR, tar.gz and tgz = TAR + GZIP,
tar.bz2 and tbz = TAR + BZ2

A name of the file where late file records are
logged is defined here.

A name of the file in which checkpoint
information is logged is defined here.

A directory in which the CHECKPT_FILE and
LATE_TRIGGER_ FILE are kept is defined here.
Accepted values are Yes and No. If the value is
No, incoming encrypted source data 322 are
decrypted and then archived. If Yes, incoming
encrypted source data 322 are archived as is.
An indicator of a decryption program used to
decrypt encrypted source data 322 is defined
here.

Variable defines to whom unhandled errors are
sent. Possible values are OPS, CUST or
OPSICUST

Variable defines an error forwarding mechanism.
EMAIL, JIRA, and FTP are options.

Variable defines who is notified regarding late
receipt of source data 322. Possible values are
$OPS_ MAILTO, $CUST_MAILTO, or
$OPS_MAILTOI$CUST_MAILTO

A number of hours to wait before follow up late
alerts are sent is defined here.

A name of a common data layout description file
is defined here.

A location where the common data layout
description file and the one or more data layout
description files 324 are stored is defined here.
A location where archive files for the common
data layout description and for the one or more
data layout description files 324 are stored is
defined here.

A location where a properties file is created is
defined here.

US 9,483,477 B2

13
TABLE I-continued

Variable

Description

UNARCH__FILES_ KEEP_ DAYS

UNARCH__FILES_ KEEP_ DAYS__
ON__FAILURE

SASCMD

SASAUTOS

CUST_PGM__DIR
USER_FUNC_DIR

SASAUTOS

DQ_ERROR__FORWARD

DQ_FILE DLM

A number of days that source data 322 is stored
in the archive directory after successful
processing is defined here. If the value is zero,
source data 322 is removed immediately after
processing.

A number of days failed files are kept in the un-
archive directory.

A command to invoke SAS, e.g.,
/sso/sfw/sas/930/SASFoundation/9.3/sas is
defined here.

SASAUTOS options before invoking SAS is
defined here.

A directory where custom SAS codes are stored
is defined here.

A directory where user function are stored is
defined here.

SASAUTOS path used during SAS invocation is
defined here.

Channel by which data quality exceptions are
forwarded to the customer is defined here. SFTP
and JIRA are options.

A delimiter used in data quality exception file is

14

defined here.

In an operation 602, the one or more intake registry files
316 are read. The one or more intake registry files 316 are
XML files used to describe attributes of incoming files of
source data 322. In an illustrative embodiment, there are two
types of intake registry files, a generic intake registry file and
a custom intake registry file. The one or more intake registry
files 316 support registration of new (unprocessed) incoming
files of source data 322 for data intake application 312 to
process based on a matching of filename parameters that
define naming pattern strings that may include regular
expressions. Either or both intake registry files may be used.
If both registry files are used, incoming files of source data
322 are matched against the filename parameters that define
naming patterns of the custom intake registry file first and
are matched against the filename parameters that define
naming patterns of the generic intake registry file when no
match is found in the custom intake registry file as described
further below.

For every incoming file, the one or more intake registry
files 316 include at least two hierarchies, a first-level param-
eters hierarchy and a second-level parameters hierarchy. The
first-level parameters hierarchy defines the characteristics of
the incoming file, and the second-level parameters hierarchy
defines the characteristics of raw data files within the
incoming file because some compressions can have multiple
files within a file. For example, a tar or zip file may be the
incoming file that may include multiple raw data files.

The generic intake registry file is used to process any data
file of source data 322 without having to configure the
custom intake registry file. For example, by placing a prefix
of “auto_” on incoming files of source data 322 with specific
file extensions (e.g., csv, txt, sas7dbat, lasr), the data can be
simply transferred to hosted data system 106. Other prefixes
may be used. The generic intake registry file can be extended
to support additional file extensions for additional file for-
mats. Data intake system 100 is designed to handle any
compression or encryption on these data files using default
compression and encryption. For illustration, the generic
intake registry file is configured for three types of files: 1)
comma delimited files (.csv), 2) SAS datasets (.sas7bdat),
and 3) pipe delimited files (.txt). The file extension matches

25

40

45

the filetypes defined in the registry. Below is the content of
an example generic intake registry file:

<REGISTRY>
<ENTRY>
<INCOMING>auto_\w*.csv</INCOMING>
<FREQ>A</FREQ>
<CONTENTS>
<FILE>
<FILEID>1001</FILEID>
<FILENAME>auto_‘\w*.csv</FILENAME>
<DESCRIPTION>CSV Files</DESCRIPTION>
<FILETYPE>DLM</FILETYPE>
<DELIMITER></DELIMITER>
<FIRSTOBS>2</FIRSTOBS>
<OVERWRITE_FLG>Y</OVERWRITE_FLG>
<EXTRACT_SCRIPT></EXTRACT_SCRIPT>
<LAYOUT_FILE></LAYOUT_FILE>
<OUTPUT_TABLE></OUTPUT_TABLE>
<PRE_PROCESS_SCRIPT></PRE_PROCESS_SCRIPT>
<POST_PROCESS_SCRIPT></POST_PROCESS_SCRIPT>
</FILE>
</CONTENTS>
</ENTRY>
<ENTRY>
<INCOMING>auto_\w*.sas7bdat</INCOMING>
<FREQ>A</FREQ>
<CONTENTS>
<FILE>
<FILEID>1002</FILEID>
<FILENAME>auto_‘\w*.sas7bdat</FILENAME>
<DESCRIPTION>SAS Datasets </DESCRIPTION>
<FILETYPE>SAS</FILETYPE>
<DELIMITER></DELIMITER>
<FIRSTOBS>2</FIRSTOBS>
<OVERWRITE_FLG>Y</OVERWRITE_FLG>
<EXTRACT_SCRIPT> </EXTRACT_SCRIPT>
<LAYOUT_FILE></LAYOUT_FILE>
<OUTPUT_TABLE></OUTPUT_TABLE>
<PRE_PROCESS_SCRIPT></PRE_PROCESS_SCRIPT>
<POST_PROCESS_SCRIPT></POST_PROCESS_SCRIPT>
</FILE>
</CONTENTS>
</ENTRY>
<ENTRY>
<INCOMING>auto_\w*.txt</INCOMING>
<FREQ>A</FREQ>
<CONTENTS>
<FILE>
<FILEID>1003</FILEID>

US 9,483,477 B2
15 16

-continued -continued
<FILENAME>auto_\w* txt</FILENAME> </FILE>
<DESCRIPTION>Pipe delimitted files </DESCRIPTION> </CONTENTS>
<FILETYPE>DLM</FILETYPE> </ENTRY>
<DELIMITER>|</DELIMITER> 5 </REGISTRY>
<FIRSTOBS>2</FIRSTOBS>
<OVERWRITE_FLG>Y</OVERWRITE_FLG>
<EXTRACT_SCRIPT></EXTRACT_SCRIPT> For illustration, Table II below includes a description of
<LAYOUT FILE></LAYOUT FILE> the first-level parameters included in the first-level param-
<OUTPUT_TABLE></OUTPUT_TABLE>
<PRE_PROCESS_SCRIPT></PRE_PROCESS SCRIPT> 10 eters hlerarchy Of the generic lntake rengtry ﬁle The
<POST_PROCESS_SCRIPT></POST_PROCESS_SCRIPT> first-level parameters can be customized for specific source
data 214 from data source device 102.
TABLE 11
Tag Name Description
<INCOMING> The incoming filename parameter is defined here. The

filename parameter can be defined, for example, as a PERL or
SAS regular expression or as a string. The incoming filename
parameter identifies a matching filename pattern that should be
unique to files of source data 322 that use the data included in
the corresponding entry to process the source file.
In an illustrative embodiment, the filename parameter may
include all aspects of the filename except the encryption
extension. If the filename is account_ 20140830.txt.gz.gpg, the
matching filename pattern regular expression may be
account_\d{8}.txt.gz. The encryption flag is included to tell
data intake application 312 that the file is encrypted. The file
pattern does not contain the encryption extension though. If the
filename is trans_ 20140830.txt.zip the matching filename
pattern regular expression may be trans_ \d{8}.txt.zip.
<FREQ> A tag to indicate frequency that the incoming file is received is
defined here. A = Ad hoc is an acceptable value indicating the
file can be received at any time.

For illustration, Table III below includes a description of
second-level parameters included in the second-level param-
eters hierarchy of the generic intake registry file. The
second-level parameters can be customized for specific
source data 214 from data source device 102.

35

TABLE III

Tag Name Description

<FILEID> A unique identifier for each incoming file of source
data 322 is defined here.

<FILENAME> A name of a raw data file post extraction from the
incoming file is defined here. This can be a pattern
and can be expressed, for example, in PERL or
SAS regular expressions. The second level
filename parameter match to this value is after
decompression and/or decryption has been run.

<DESCRIPTION> A descriptive name of the incoming file is defined
here.

<FILETYPE> A type of the file is defined here. This field may be
considered to define a read file indicator. Accepted
values are DLM, CSV, SAS
DLM = Delimited file
CSV = Comma separated file
SAS = SAS dataset

<DELIMITER> A delimiter value if <FILETYPE> is DLM. E.g.
pipe(l), tab(\t) is defined here. This field may be
considered to define a read file indicator.

<FIRSTOBS> An observation at which data values start is defined
here. This field may be considered to define a read
file indicator.

<OVERWRITE__FLG> A flag to indicate whether overwrites are allowed for
the incoming file is defined here. If the flag is set, a
previously successfully processed file can be
overwritten by a new file of the same name.
Accepted values are Y, N.

<EXTRACT__SCRIPT> A custom extract script indicator is defined here. A
custom extract script can be used and if it is used

US 9,483,477 B2

17
TABLE III-continued

Tag Name

Description

<LAYOUT_FILE>

<OUTPUT_TABLE>

<PRE__PROCESS__SCRIPT>

<POST_PROCESS__SCRIPT>

the name of the script is included here. If there is no
custom extract script, the fleld is blank.

A data layout description file of the one or more
data layout description files 324 used for this data
file is defined here. If the field is blank, data intake
application 312 uses the common data layout
description file listed in configuration file 314. If
there is no layout information regarding this file in
the common data layout description file (no
matching filename parameter), intake application
312 may use the SAS command “proc import” to
extract data from delimited files. An error may be
generated by extraction module 704 for a fixed
width file if no data layout description file is defined
here. This field may be considered to define a read
file indicator.

A name of the output table is defined here. This field
can have the following values:

<TABLE PREFIX>_ [RUNDATE]:

e.g. tab_ [RUNDATE]. The output table name is a
concatenation of “tab__” and a run date of the file in
yyyymmdd format.

<TABLE PREFIX>_ [pos<n>-pos<n>]:

e.g. acc__[pos9-posl6]. If the data file name is
account__20140930.txt, the output table is a
concatenation of “acc_” and the value from
positions 9 to 16 of the data filename. In this
example, positions 9 to 16 of the data filename is
date “20140930”. The output table name is
“acc__201409307.

Blank:

If the field is blank, the output table name is
constructed using the first 32 characters of the data
file.

A pre-process program indicator is defined here. A
pre-process program can be used and if it is used
the name of the program is included here. If there is
no pre-process program, the field is blank. A pre-
process program can be run before the extraction of
the data.

A post-process program indicator is defined here. A
post-process program can be used and if it is used
the name of the program is included here. If there is
no post-process program, the field is blank. A post-
process program can be run after the extraction of

18

the data.

The custom intake registry file supports registration of
expected file types for scheduled data loads. As opposed to
the generic intake registry file, the custom intake registry file
includes calendar components to confirm data is received
when it is expected and that notifications are sent out if not
received when expected. Files sent as part of this formal
processing may adhere to the following naming convention:
yyyymmdd.{HHMM}.{env}.{x_OF_y} FileName.[Exten-
sion].{Compression}.{Encryption}, where the tokens in the
filename are defined further below. Tokens within curly
braces are optional and can be ignored where not necessary.

45

50

“HHMM” represents a time in 24 hour format (0000-
2359). This token may be useful for sending multiple
independent files of the same type for a given day. For
example, sending two batches of orders for a single day may
look like: 20080101.1200.PRD.1_OF_1.Orders.csv.gz and
20080101.2359.PRD.1_OF_1.0Orders.csv.gz.

“Env” represents a server environment that will consume
the incoming file. This token may be useful when different
sets of data are consumed by different environments such as
development, test, production, etc. Various identifiers may
be used, for example: PRD—Production, DEV—Develop-

Tokens within square brackets are mandatory, but multiple 55 ment, UAT—User Acceptance Testing, QA—Quality Assur-
options may be available. ance, etc.

“yyyymmdd” represents a date with a four-digit year, “x_OF_y” indicates that the incoming file is a multi-part
two-digit month, and two-digit day. The date used should be file. Large files may need to be split into smaller pieces for
consistent and predictable. For example, for daily files the file transfer to data intake device 104. “Y” indicates the total
date should be incremented every day and no dates should 60 number of files in the set, and “X” identifies the sequence
be repeated for the same file type unless that file is being each individual file should be processed. The /yyyymmdd/,
re-sent as a replacement. Weekly files should represent a /HHMM, and /FileName/ portions of the filename should be
consistent day of the week. Monthly files should be a consistent for all files in the set. For example:
consistent day of the month. If files need to be retransmitted 20080101.1405.PRD.1_OF_3.LargeFile.csv.gz,
for any reason, or if files are delayed from their expected 65 20080101.1405.PRD.2_OF_3.LargeFile.csv.gz,

arrival date, they should retain the expected date prefix so
they can be easily identified and tracked.

20080101.1405.PRD.3_OF_3.LargeFile.csv.gz is a consis-
tent set of files.

US 9,483,477 B2

19

“FileName” represents a meaningful filename that corre-
sponds to the content of the file. In some embodiments, the
filename should not contain any spaces. Filenames are used
to match to the <INCOMING> parameter of the first-level
parameters and to the <FILENAME> parameter of the
second-level parameters.

“Extension” indicates a general format of the file. Typical
file extensions can include .csv for comma separated values,
txt for fixed width or tab delimited text, .sas7bdat for a SAS
dataset, .xml for XML text, etc. As with the “FileName”
token, the “Extension” should remain consistent. In some
embodiments, if multiple data files are being bundled into
one file using tar or zip, the name of the file being sent
should not include this extension. For example, if
20080101 .account.txt and 20080101 transaction.txt are
being bundled into one tar file, the resulting file could be
named 20080101 .daily_files.tar.gz

10

15

20

“Compression” represents a type of compression used,
where “.zip” indicates use of the Windows WinZip format,
“.gz” indicates use of the UNIX gzip utility, “.z” indicates
use of the UNIX compress utility, “.tar.gz” indicates use of
the UNIX tar utility and use of the UNIX gzip utility, “.tbz
or “.tar.bz2” indicates use of the UNIX tar utility and use of
the bzip2 compression program. If multiple files are bundled
into one file using the tar or zip utilities, this file pattern may
be mentioned in the incoming file pattern.

“Encryption” represents a type of encryption used.

For illustration, Table IV below includes a description of
first-level parameters of the first-level parameters hierarchy
of the custom intake registry file. The first-level parameters
can be customized for specific source data 214 from data
source device 102.

TABLE IV

Tag Name

Description

<INCOMING>

<FREQ>

<TRIGGER_FILE_EXT>

<PARTITIONED>

<RUN__DAYS>

<RUN_MONTHS>

<RUN_DOW>

<TRIGGER_LOAD_ FLG>

<LATE__ALERT_DUR>

The incoming filename parameter is defined
here. The filename parameter can be defined,

for example, as a PERL or SAS regular
expression or as a string. The incoming

filename parameter identifies a matching
filename pattern that should be unique to files of
source data 322 that use the data included in

the corresponding entry to process the source
file.

In an illustrative embodiment, the filename
parameter may include all aspects of the
filename except the encryption extension. If the
filename is account_ 20140830.txt.gz.gpg, the
matching filename pattern regular expression
may be account_\d{&}.txt.gz. The encryption
flag is included to tell data intake application
312 that the file is encrypted. The file pattern
does not contain the encryption extension
though. If the filename is trans_ 20140830.txt.zip
the matching filename pattern regular

expression may be trans_ \d{&}.txt.zip.

A tag to indicate frequency that the incoming file
is received is defined here. Values may include
A, D, W, M, Q,Y, where A = Ad hoc, D = Daily,
W = Weekly, M = Monthly, Q = Quarterly, Y =
Yearly.

An extension of the one or more trigger files 326
is defined here. E.g. “.done’, ‘.count’.

A flag to indicate whether the incoming file is
partitioned is defined here. This field may be
considered to define a read file indicator.
Accepted values are Y—yes, N—no

Days on which the incoming file is expected is
defined here. If the frequency is set to “A”(ad
hoc), all <RUN__ . .. > fields should be blank. This
field accepts single values, date ranges, and
comma delimited values.

For example, single values include:

1 = expected on the first day of the month or

* = expected every day.

For example, a date range may include 1-5 =
expected any day between the 1 and the 5%
days of the month.

For example, a comma delimited value may
include 1, 3, 5 = expected 1%, 3" and 5% days of
the month.

Months in which the incoming file is expected is
defined here. This field accepts similar values

as <RUN_DAYS> with a maximum value of 12.
Days of week the incoming file is expected is
defined here. This field accepts similar values

as <RUN_DAYS> with a maximum value of 7.
A flag to indicate whether trigger load contents
should be loaded is defined here.

If receipt of the incoming file is delayed, a
number of hours after the last expected date-
time expected for receipt of the incoming file

US 9,483,477 B2
21 22
TABLE IV-continued

Tag Name Description

after which a late file alert is sent based on the
value of LATE_ ALERT EMAIL in configuration
file 314 is defined here.

<REPROCESS_ FLG> A previously received file can be reprocessed
by just sending an associated trigger file if this
flag is set to Y. The new trigger filename should
be the same as the original trigger filename.
Accepted values are Y—yes, N—no.

<MAX__DELAY> A maximum number of hours data intake
application 312 waits for remaining parts after
the first part of the incoming file is received is
defined here. If the file is a partitioned file, data
intake application 312 waits for the configured
number of hours for remaining parts of the
incoming file to be received. If parts arrive after
the cut-off time, the files are not processed.
Similarly, if a trigger file is expected, data intake
application 312 waits for the configured number
of hours for the associated trigger file after
which the incoming file is invalidated and is not
extracted.

<ENCRYPTED_ FLG> A flag to indicate whether the incoming file is
encrypted is defined here. This fleld may be
considered to define a read file indicator.
Accepted values are Y—yes, N—no.

<COMPRESSED_ FLG> A flag to indicate whether the file is compressed
is defined here. This field may be considered to
define a read file indicator. Accepted values are
Y—yes, N—no.

<EXTRACT_PGM> An indicator of a compression program used to
compress source data 322 in the archive
directory if source data 322 is uncompressed
when sent to the incoming directory. This field
may be considered to define a read file
indicator. Accepted values may include zip, gz,
gzip, tar, tar.gz, tar.bz2.

<DATA__ENCRYPTION_ FLG> A flag to indicate whether the incoming file is
encrypted is defined here. This fleld may be
considered to define a read file indicator.
Accepted values are Y—yes, N—no.

<TRIGGER__ENCRYPTION_FLG> A flag to indicate whether the trigger file of the
one or more trigger files associated with the
incoming file 326 is encrypted is defined here.
Accepted values are Y—yes, N—no.

For illustration, Table V below includes a description of
second-level parameters of the custom intake registry file are

shown.
TABLE V

Tag Name Description

<FILEID> A unique identifier for each incoming file of source
data 322 is defined here.

<FILENAME> A name of a raw data file post extraction from the
incoming file is defined here. This can be a pattern
and can be expressed, for example, in PERL or
SAS regular expressions. The second level
filename parameter match to this value is after
decompression and/or decryption has been run.

<DESCRIPTION> A descriptive name of the incoming file is defined
here.

<FILETYPE> A type of the file is defined here. This field may be

considered to define a read file indicator. Accepted
values are DLM, CSV, FIXED_ WIDTH, SAS
DLM = Delimited file
CSV = Comma separated file
FIXED_ WIDTH = Fixed width file
SAS = SAS dataset

<DELIMITER> A delimiter value if <FILETYPE> is DLM. E.g.
pipe(l), tab(\t) is defined here. This field may be
considered to define a read file indicator.

US 9,483,477 B2

TABLE V-continued
Tag Name Description
<FIRSTOBS> An observation at which data values start is defined

<OVERWRITE__FLG>

<EXTRACT__SCRIPT>

<LAYOUT_FILE>

<OUTPUT_TABLE>

<PRE__PROCESS__SCRIPT>

<POST_PROCESS__SCRIPT>

here. This field may be considered to define a read
file indicator.

A flag to indicate whether overwrites are allowed for
the incoming file is defined here. If the flag is set, a
previously successfully processed file can be
overwritten by a new file of the same name.
Accepted values are Y, N.

A custom extract script indicator is defined here. A
custom extract script can be used and if it is used
the name of the script is included here. If there is no
custom extract script, the fleld is blank.

A data layout description file of the one or more
data layout description files 324 used for this data
file is defined here. If the field is blank, data intake
application 312 uses the common data layout
description file listed in configuration file 314. If
there is no layout information regarding this file in
the common data layout description file (no
matching filename parameter), intake application
312 may use the SAS command “proc import” to
extract data from delimited files. An error may be
generated by extraction module 704 for a fixed
width file if no data layout description file is defined
here. This field may be considered to define a read
file indicator.

A name of the output table is defined here. This field
can have the following values:

<TABLE PREFIX>_ [RUNDATE]:

e.g. tab_ [RUNDATE]. The output table name is a
concatenation of “tab__” and a run date of the file in
yyyymmdd format.

<TABLE PREFIX>_ [pos<n>-pos<n>]:

e.g. acc__[pos9-posl6]. If the data file name is
account__20140930.txt, the output table is a
concatenation of “acc_” and the value from
positions 9 to 16 of the data filename. In this
example, positions 9 to 16 of the data filename is
date “20140930”. The output table name is
“acc__201409307.

Blank:

If the field is blank, the output table name is
constructed using the first 32 characters of the data
file.

A pre-process program indicator is defined here. A
pre-process program can be used and if it is used
the name of the program is included here. If there is
no pre-process program, the field is blank. A pre-
process program can be run before the extraction of
the data.

A post-process program indicator is defined here. A
post-process program can be used and if it is used
the name of the program is included here. If there is
no post-process program, the field is blank. A post-
process program can be run after the extraction of
the data.

Below is the content of an example custom intake registry

file that contains information to read in a zip file that

24

-continued

includes three raw data files and to read in a single pipe

delimited text file.

<REPROCESS_FLG></REPROCESS_FLG>
<MAX_DELAY></MAX_DELAY>

>3 <COMPRESSED_FLG>Y</COMPRESSED_FLG>
<EXTRACT_PGM></EXTRACT_PGM>
<REGISTRY> <DATA_ENCRYPTION_FLG></DATA_ENCRYPTION_FLG>
<ENTRY> <TRIGGER_ENCRYPTION_FLG></TRIGGER_ENCRYPTION_FLG>
<INCOMING>sample_multi_file.zip</INCOMING> <CONTENTS>
<FREQ>A</FREQ> 60 <FILE>
<TRIGGER_FILE_EXT></TRIGGER_FILE EXT> <FILEID>1</FILEID>
iiﬁI;EZEE;%P%gE£ONED> <FILENAME=>sample_pipe.txt</FILENAME>
<RUN MONTHS></RUN MONTHS> <DESCRIPTION>Sample Pipe Delimited file</DESCRIPTION>
<RUN_DOW></RUN_DOW> <FILETYPE>DLM</FILETYPE>
<TRIGGER_LOAD_FLG>N</TRIGGER_LOAD_FLG> 65 <OVERWRITE_FLG>Y</OVERWRITE_FLG>

<LATE_ALERT DUR></LATE_ALERT DUR>

<DELIMITER>|</DELIMITER>

US 9,483,477 B2

25

-continued

26

-continued

<FIRSTOBS>2</FIRSTOBS>
<EXTRACT_SCRIPT></EXTRACT_SCRIPT>
<LAYOUT_FILE></LAYOUT FILE>
<OUTPUT_TABLE></OUTPUT_TABLE>
<PRE_PROCESS_SCRIPT></PRE_PROCESS_SCRIPT>
<POST_PROCESS_SCRIPT></POST_PROCESS_SCRIPT>

</FILE>

<FILE>
<FILEID>2</FILEID>
<FILENAME>sample_csv.csv</FILENAME>
<DESCRIPTION>Sample CSV File</DESCRIPTION>
<FILETYPE>DLM</FILETYPE>
<OVERWRITE_FLG>Y</OVERWRITE_FLG>
<DELIMITER></DELIMITER>
<FIRSTOBS>2</FIRSTOBS>
<EXTRACT_SCRIPT></EXTRACT_SCRIPT>
<LAYOUT_FILE></LAYOUT FILE>
<OUTPUT_TABLE></OUTPUT_TABLE>
<PRE_PROCESS_SCRIPT></PRE_PROCESS_SCRIPT>
<POST_PROCESS_SCRIPT></POST_PROCESS_SCRIPT>

</FILE>

<FILE>
<FILEID>3</FILEID>
<FILENAME>sample_fixedwidth.dat</FILENAME>

<DESCRIPTION>sample Fixed Width File</DESCRIPTION>

<FILETYPE>FIXED_WIDTH</FILETYPE>
<OVERWRITE_FLG>Y</OVERWRITE_FLG>
<DELIMITER></DELIMITER>
<FIRSTOBS>1</FIRSTOBS>
<EXTRACT_SCRIPT></EXTRACT_SCRIPT>
<LAYOUT_FILE></LAYOUT FILE>
<OUTPUT_TABLE></OUTPUT_TABLE>
<PRE_PROCESS_SCRIPT></PRE_PROCESS_SCRIPT>
<POST_PROCESS_SCRIPT></POST_PROCESS_SCRIPT>
</FILE>
</CONTENTS>
</ENTRY>
<ENTRY>
<INCOMING>sample_bad_file.txt</INCOMING>
<FREQ>A</FREQ>
<TRIGGER_FILE_EXT></TRIGGER_FILE EXT>
<PARTITIONED>N</PARTITIONED>
<RUN_DAYS></RUN_DAYS>
<RUN_MONTHS></RUN_MONTHS>
<RUN_DOW></RUN_DOW>
<TRIGGER_LOAD_FLG>N</TRIGGER_LOAD_FLG>
<LATE_ALERT DUR></LATE_ALERT DUR>
<REPROCESS_FLG></REPROCESS_FLG>
<MAX_DELAY></MAX_DELAY>
<COMPRESSED_FLG></COMPRESSED_FLG>

10

15

20

25

30

35

40

<EXTRACT_PGM></EXTRACT_PGM>

<DATA_ENCRYPTION_FLG></DATA_ENCRYPTION_FLG>

<TRIGGER_ENCRYPTION_FLG></TRIGGER_ENCRYPTION_FLG>

<CONTENTS>

<FILE>
<FILEID>4</FILEID>
<FILENAME>sample_bad_file.txt</FILENAME>
<DESCRIPTION>Sample Bad File</DESCRIPTION>
<FILETYPE>DLM</FILETYPE>
<OVERWRITE_FLG>Y</OVERWRITE_FLG>
<DELIMITER>|</DELIMITER>
<FIRSTOBS>2</FIRSTOBS>
<EXTRACT_SCRIPT></EXTRACT_SCRIPT>
<LAYOUT_FILE></LAYOUT_FILE>
<OUTPUT_TABLE></OUTPUT_TABLE>
<PRE_PROCESS_SCRIPT></PRE_PROCESS_SCRIPT>
<POST_PROCESS_SCRIPT></POST_PROCESS_SCRIPT>
</FILE>
</CONTENTS>
</ENTRY>
</REGISTRY>

After the initial deployment, if the file requirements of
source data 214 changes, the one or more intake registry files
316 can be updated. The FILEID field for existing entries
may not be updated. Instead, a new entry can be added with
a unique file id (preferably incrementally) or other attributes
of the entries can be updated.

Each <INCOMING> field value defined in the one or
more intake registry files 316 defines a filename parameter,
and each <FILENAME> field defined in the one or more
intake registry files 316 defines a filename parameter. The
remaining first-level parameters are associated with each
filename parameter using the <INCOMING> field. The
remaining second-level parameters are associated with each
filename parameter using the <FILENAME> field. Each
filename parameter of the resulting plurality of filename
parameters identifies a matching filename pattern used to
define which of the remaining first-level parameters and of
the remaining second-level parameters are used for files that
match the field values.

In an operation 604, a run control table of control data 708
is created. For illustration, an example of a run control table
of control data 708 is shown in Table VI(a) and VI(b) below.

TABLE VI(a)
Record Filechecker File Frequency Project File Entry Fre-
Identifier Run ID Identifier Identifier Identifier Type quency Data File Name
1 R20150325182747 18 0 AID Custom A sample_pipe.txt
2 R20150325183026 11 84 AID Custom D def_daily 20140811.csv
3 R20150325184158 18 0 AID Custom A sample_pipe.txt
4 R20150325185005 18 0 AID Custom A sample_pipe.txt
5 R20150325190317 18 0 AID Custom A sample_pipe.txt
6 R20150325190509 1 84 AID Custom D sample_pipe.txt
7 R20150325190702 1 84 AID Custom D sample_pipe.txt
8 R20150325191704 8 0 AID Custom A demographics _20140806.csv
9 R20150325191945 8 0 AID Custom A demographics _20140806.csv
10 R20150325192033 8 0 AID Custom A demographics _20140806.csv
11 R20150325192306 8 0 AID Custom A demographics _20140806.csv

US 9,483,477 B2

27

28

TABLE VI(b)

Trigger File Name

File Folder

Unarchive Datetime Run Status Delete Status Code

sample_ pipe.txt.done
def_daily_ 20140811.csv.done
sample_ pipe.txt.done
sample_ pipe.txt.done
sample_ pipe.txt.done
sample_ pipe.txt.done
sample_ pipe.txt.done

/unarchive/R20150325182747
/unarchive/R20150325183026
/unarchive/R20150325184158
/unarchive/R20150325185005
/unarchive/R20150325190317
/unarchive/R20150325190509
/unarchive/R20150325190702
/unarchive/R20150325191704
/unarchive/R20150325191945
/unarchive/R20150325192033
/unarchive/R20150325192306

25MARI15:18:27:47
25MARI15:18:30:26
25MARI15:18:41:59
25MARI15:18:50:05
25MARI15:19:03:17
25MARI15:19:05:09
25MARI15:19:07:02
25MARI15:19:17:05
25MAR15:19:19:45
25MARI15:19:20:35
25MARI15:19:23:06

S N I I SR N N NI SR
NG UG PG IR

In an operation 606, a calendar table of control data 708
is created. For example, the calendar table is created by
evaluating the custom intake registry file to determine when
each incoming file is expected. For illustration, an example
of a calendar table of control data 708 is shown in Table VII
below.

In operation 614, the new source data 322 is stored in the
archive directory, for example, defined by the value speci-
fied for the <TRANSPORT_ARCHIVE_DIR> variable in
configuration file 314. The new source data 322 is stored in
the archive directory to ensure the original files can be
restored as needed due to any processing or hardware

TABLE VII

File Fre- First Last Late Alert Re- Last Alert

Iden- quency Fre- Expected Expected Duration process Sent

tifier Identifier Expected File Pattern quency Date Date In Hours Flag Datetime
1 115 xyz_daily_(\d{8})_filel.txt D 20150425 20150425 12 0 10 JUN. 2015:06:50:20
1 116 xyz_daily_(\d{8})_filel.txt D 20150426 20150426 12 0 10 JUN. 2015:06:50:20
1 117 xyz_daily_(\d{8})_filel.txt D 20150427 20150427 12 0 10 JUN. 2015:06:50:20
1 118 xyz_daily_(\d{8})_filel.txt D 20150428 20150428 12 0 10 JUN. 2015:06:50:20
1 119 xyz_daily_(\d{8})_filel.txt D 20150429 20150429 12 0 10 JUN. 2015:06:50:20
1 120 xyz_daily_(\d{8})_filel.txt D 20150430 20150430 12 0 10 JUN. 2015:06:50:20
1 145 xyz_daily_(\d{8})_filel.txt D 20150525 20150525 12 0 10 JUN. 2015:06:50:20
1 146 xyz_daily_(\d{8})_filel.txt D 20150526 20150526 12 0 10 JUN. 2015:06:50:20
1 147 xyz_daily_(\d{8})_filel.txt D 20150527 20150527 12 0 10 JUN. 2015:06:50:20

For example, an expected receipt timer is defined for each
file included in the first-level parameters that is not indicated
as Ad hoc (<FREQ>A</FREQ>) based on the value speci-
fied in the <FREQ> field and the values specified in the
<RUN_...>fields. The expected receipt timer may include
the value specified in the <LATE_ALERT_DUR> field. As
another example, for a partitioned file, an expected receipt
timer may be defined after receipt of the first file in the set
to include the value specified in the <MAX_DELAY> field.

In an operation 608, a determination is made concerning
whether or not the expected receipt timer has expired for any
incoming file based on a review of values defined in the
calendar table of control data 708. If an expected receipt
timer has expired, processing continues in an operation 680.
If an expected receipt timer has not expired, processing
continues in an operation 610.

In operation 610, the incoming directory, for example,
defined by the value specified for the <TRANSPORT_IN-
COMING_DIR> variable in configuration file 314, is
scanned for receipt of new source data 322 that is a copy of
source data 214 received from data source device 102. The
scan interval may be user definable.

In an operation 612, a determination is made concerning
whether or not new source data 322 is stored in the incoming
directory. If new source data 322 is stored in the incoming
directory, processing continues in an operation 614. If new
source data 322 is not stored in the incoming directory,
processing continues in operation 608 to continue to monitor
for expiration of any expected receipt timers and storage of
any new source data.

40

45

failures. Operation 614 includes compressing the source
data if the source data is not already compressed to minimize
the disk space required to support archiving. Archive file
names may receive a timestamp suffix to ensure files with
the same name are archived uniquely.

In an operation 616, a source file is selected from the new
source data 322 stored in the archive directory.

In an operation 618, a filename match is identified by
comparing the values associated with each <INCOMING>
field value with a filename of the selected source file to
define which of the remaining first-level parameters are used
for the selected source file. The comparison may be a string
match or a regular expression match depending on how the
<INCOMING>> field value is defined. If both registries are
used, an attempt to match the filename of the selected source
file to the filename parameters included in the custom intake
registry file may be performed first and an attempt to match
the filename of the selected source file to the filename
parameters included in the generic intake registry file may
be performed second when no match is found in the custom
intake registry file.

In an operation 619, a determination is made concerning
whether or not a matching filename parameter was identified
in operation 618. If a matching filename parameter was
identified in operation 618, processing continues in an
operation 620. If matching filename parameter was not
identified in operation 618, processing continues in opera-
tion 680 in FIG. 6c.

In operation 620, a determination is made concerning
whether or not the selected source file is expected. For
example, the receipt time may be compared to values stored

US 9,483,477 B2

29
in the calendar table of control data 708 based on the value
specified in the <FREQ> field and the values specified in the
<RUN_. . . > fields of the matching filename parameter. If
the selected source file is expected, processing continues in
an operation 622. If the selected source file is not expected,
processing continues in operation 680.

In operation 622, a determination is made concerning
whether or not the selected source file is compressed. For
example, the determination may be based on the value
specified in the <COMPRESSED_FLG> field of the match-
ing filename parameter. If the selected source file is com-
pressed, processing continues in an operation 624. If the
selected source file is not compressed, processing continues
in an operation 626.

In operation 624, the selected source file is decompressed
using SCRIPT.

In operation 626, a determination is made concerning
whether or not the selected source file is encrypted. For
example, the determination may be based on the value
specified in the <DATA_ENCRYPTION_FLG> field of the
matching filename parameter. If the selected source file is
encrypted, processing continues in an operation 628. If the
selected source file is not encrypted, processing continues in
an operation 630.

In operation 628, the selected source file is decrypted.
Data intake application 312 may use the location of the
un-archive directory to decompress and process the selected
source file. The values specified for the UNARCH_FILES _
KEEP_DAYS and the UNARCH_FILES KEEP DAY-
S_ON_FAILURE variables in configuration file 314 specity
how long un-archived files are kept when processing is
successful and when error conditions occur, respectively.

In operation 630, a determination is made concerning
whether or not a trigger file of the one or more trigger files
326 associated with the selected source file is present. For
example, the incoming directory may be scanned for a
trigger file having a matching filename pattern to the
selected source file and having the extension specified in the
<TRIGGER_FILE_EXT> field of the matching filename
parameter. For illustration, if the filename of the selected
source file is 20080101.1405.PRD.claims.txt.gz, the trigger
file may be named 20080101.1405.PRD.claims.txt.gz.count
if the extension specified in the <TRIGGER_FILE_EXT>
field of the matching filename parameter is “.count”. If the
source file being sent is 20080101.1405.PRD.claims.txt.g-
7.gpg, the trigger file may be named 20080101.1405.PRD-
.claims.txt.gz.count because the trigger filename does not
contain the extension “.gpg” that indicates the encryption
extension.

If the trigger file is present, processing continues in an
operation 632. If the trigger file is not present, processing
continues in an operation 634.

In operation 632, the received trigger file is read. If the
value specified in the <ITRIGGER_ENCRYPTION_FLG>
field of the matching filename parameter indicates that the
trigger file is encrypted, the received trigger file is decrypted
as part of reading the trigger file. For example, if the trigger
file is encrypted, the trigger filename may be named
20080101.1405.PRD.claims.txt.gz.count or
20080101.1405.PRD.claims.txt.gz.done after decryption.

30

35

45

55

30

The one or more trigger files 326 may be plain text files
that contain information used to audit the file transfer and to
perform one or more data integrity tests. Trigger files may be
transferred to data intake device 104 from data source device
102 after the selected source file has been transferred to
indicate completion of the transfer. The one or more trigger
files 326 may be optional.

Each of the one or more trigger files 326 may include a
filename, a number of records, a checksum value, and a
modification date that define a data integrity test value for
the selected source file. The modification data may include
a begin date and an end date. The filename may be the
filename of one or more source files after decompression and
decryption. If multiple files are being bundled into one file,
the filename is the name of the individual data files within
the bundle. For illustration, the checksum value may be an
md5 hash of the uncompressed individual data file. A trigger
file of the one or more trigger files 326 may be empty to
serve as an indicator that source data 322 is ready to be
extracted. In an illustrative embodiment, if the trigger file is
populated, the filename and the number of records may be
required while the remaining fields are optional.

An example trigger file may be named “sample_pipe.tx-
t.count” and include sample_pipe.txt|428102/12/2015102/12/
201515e364dc47504d63e451999d4d923bd2f, where “sam-
ple_pipe.txt” is the filename, 428 is the number of records,
“02/12/2015” is the begin date, 02/12/2015” is the end date,
and “5e364dc47504d63e45f999d4d923bd21” is the check-
sum value. “I” is the delimiter. If the field value is not
included, the delimiter is still included.

If the file is bundled, the trigger file includes a line for
each individual file. For example, if datafiles
20080201.1405 PRD.account.txt and
20080201.1405 PRD.trans.txt are sent in a compressed tar
file, 20080201.1405.PRD.daily_files.tar.gz, the trigger con-
tents could include 20080201.1405.PRD.account.
txt11345612008010112008013114a8d188b464d80212916e-
09440d34117 and 20080201.1405.PRD..trans.txt|1248|
2008010112008013117a0y488b464n80212916e09440b87-
654.

Referring to FIG. 654, in operation 634, the selected source
file or a file of multiple files bundled into the selected source
file is selected. For example, if datafiles
20080201.1405 PRD.account.txt and
20080201.1405 PRD.trans.txt are sent in a compressed tar
file, 20080201.1405.PRD.daily_files.tar.gz, the uncom-
pressed file 20080201.1405.PRD.account.txt may be
selected.

In an operation 636, a filename match is identified by
comparing the values associated with each <FILENAME>
field value of the matching filename parameter identified
from the <INCOMING> field value to define which of the
remaining second-level parameters are used for the selected
source file. If there is only <FILENAME> field value of the
matching filename parameter identified from the <INCOM-
ING> field value, the associated values are used to define
which of the remaining second-level parameters are used for
the selected source file. The comparison may be a string
match or a regular expression match depending on how the
<FILENAME> field value is defined.

US 9,483,477 B2

31

In an operation 637, a determination is made concerning
whether or not a matching filename parameter was identified
in operation 636. If a matching filename parameter was
identified in operation 636, processing continues in an
operation 638. If matching filename parameter was not
identified in operation 636, processing continues in opera-
tion 680.

In operation 638, any pre-process program indicator iden-
tified from the <PRE_PROCESS_SCRIPT> field value for
the matching second level parameters is executed for the
selected source file. The pre-process program associated
with the pre-process program indicator may be implemented
in software (e.g., comprised of computer-readable and/or
computer-executable instructions) stored in second com-
puter-readable medium 308 and accessible by second pro-
cessor 310 for execution of the instructions that embody the
operations of the pre-process program. The pre-process

10

15

32

which a data layout description file should be present. The
data layout description file is used to define the layout of the
selected source file. The data layout description file can be
one common file for the entire project or one per data file.
The common data layout description file name may match
the value defined in the <DATASPEC_FILE> variable of
configuration file 314. If the data layout description file is
one per data file, the data layout description filename
matches the value defined in the <LAYOUT _FILE> field of
the matching second-level filename parameter. The data
layout description file may be sent along with the selected
source file. The one or more data layout description files may
be stored in the location defined by the <DATASPEC_DIR>
variable in configuration file 314.

For illustration, Table VIII below includes a description of
a data layout description file.

TABLE VIII

Variable

Description

extract__file_ description

extract__file_ pattern

extract__field__order

extract__field_ name

extract__fleld_ label

extract__fleld_ type

extract__fleld_ length
extract__field_ format

extract__fleld__informat

extract_dq_ rule

A descriptive name of the source file for
identification is defined here.

A filename pattern. This should be same as the
<FILENAME> field in the one or more intake
registry files 316 is defined here.

An order of the fields in the output table
identified in the <OUTPUT__TABLE> field in the
one or more intake registry files 316 is defined
here.

A name of the column in the source file is
defined here.

A column label in the output table identified in
the <OUTPUT__TABLE> field in the one or more
intake registry files 316 is defined here. If blank,
extract__field_name values are used.

A data type of the column is defined here.
Accepted values may include char for character
and num for numeric.

A length of the column is defined here.

A format to be used in the output table identified
in the <OUTPUT__TABLE> field in the one or
more intake registry files 316 is defined here. If
blank, no formatting is done.

A format to be used while reading the source

file is defined here. If blank, a default format is
used.

An indicator of a data quality test to execute is
defined here. If blank, no data quality test is
executed.

program may be written using one or more programming
languages, assembly languages, scripting languages, etc.
The pre-process program may be implemented as a Web
application.

In operation 640, a determination is made concerning
whether or not a data layout description file of the one or
more data layout description files 324 associated with the
selected source file is present. A delimited file such as a
comma-delimited file may include a list of source files for

50

Referring to FIG. 8, a content 800 of a data layout
description file is shown in accordance with an illustrative
embodiment. If a row fails a particular data quality test, it is
written to a data quality exception dataset along with a
reason for the data quality test failure. If multiple rules fail,
all failed rules may be documented in the exception dataset.
The exception dataset can be configured to be sent back to
data source device 102. For illustration, Table IX below
includes a description of illustrative data quality test types.

TABLE IX

Data quality test type

Description

DQ_DATA_TYPE

DQ__INLIST(list=vall:val2:val3)

Test checks whether the data in the specific
column contains the data type specified.
Test verifies whether the data in the specific

column is one of the values in the list.

33

US 9,483,477 B2
34

TABLE IX-continued

Data quality test type

Description

DQ_DIGITS
DQ_CHARS

DQ_ALPHANUM

DQ_NOTNULL

DQ_ INRANGE(vall-val2)

DQ_EXRANGE(vall-val2)

DQ__LOOKUP(library.sasdsn.column)

Test verifies whether the data in the specific
column contains only digits.

Test verifies whether the data in the specific
column contains only characters.

Test verifies whether the data in the specific
column contains only alphanumeric
characters.

Test verifies whether the data in the specific
column is not null.

Test verifies whether the data in the specific
column is within the range vall-val2
specified inclusive of boundary values.

Test verifies whether the data in the specific
column is within the range vall-val2
specified exclusive of boundary values.
Test verifies whether the data in the specific

column is in a look-up table defined by

library.sasdsn.column.

If the data layout description file is present, processing
continues in an operation 642. If the data layout description
file is not present, processing continues in an operation 644.

In operation 642, the received data layout description file
is read for the selected source file. In operation 644, a data
layout description file is created automatically. A data layout
description file may be created for certain file types (e.g.,
delimited file types) when a data layout description file is not
present. The automatically generated data layout description
file may be edited and the length, formats, and other prop-
erties can be validated.

In an operation 646, a determination is made concerning
whether or not a custom extract script indicator is defined in
the <EXTRACT_SCRIPT> field of the matching filename
parameter identified in operation 636. If a custom extract
script indicator is defined, processing continues in an opera-
tion 648. If a custom extract script indicator was not defined,
processing continues in operation 650.

In operation 648, any custom extract script identified from
the <EXTRACT_SCRIPT> field value for the matching
second level parameters is executed on the selected source
file. The custom extract script may be implemented in
software (e.g., comprised of computer-readable and/or com-
puter-executable instructions) stored in second computer-
readable medium 308 and accessible by second processor
310 for execution of the instructions that embody the
operations of the custom extract script. The custom extract
script may be written using one or more programming
languages, assembly languages, scripting languages, etc.
The custom extract script may be implemented as a Web
application. Below is a sample extract script for illustration:

libname sasext “/aid/warehouse/quicketl/sinlef/extract/
extractETL”;

20

40

45

50

* set the java classpath;
options source;
OPTIONS SET=CLASSPATH
“/dig/projects/ADI2/sas/programs/java:/dig/projects/ADI2/sas/programs/
java/json-simple-1.1.1.jar:/dig/projects/ADI2/sas/programs/java/javax.json-
1.0.jar”;
*get to the location of the input file;
%let jsonfile = &INCOMING_DIR./&DATAFILE;
* call java to ingest file as a data set;
*write the file out based on the output table name in the ADI registry;
data adiext. &KOUTPUT_TABLE_ENTRY;

length b rowid objid parid 8 parsed name value $200;

*instantiate the Java Object;

declare javaobj j (‘com.sas.sso.solutions.JSONConsumer’, “&json-

j.c,allVoidMethod (‘processJSONFile’);

j.callBooleanMethod(“hasNext’, b);

do while(b);
j.callStringMethod(“next’, parsed);
rowid = input(substr(parsed, 1, find(parsed, *)), 8.);
parsed = strip(substr(parsed, find(parsed, ‘*)));
objid = input(substr(parsed, 1, find(parsed, **)), 8.);
parsed = strip(substr(parsed, find(parsed, ‘*)));
parid = input(substr(parsed, 1, find(parsed, ‘")), 8.);
parsed = strip(substr(parsed, find(parsed, ‘*)));
name = strip(substr(parsed, 1, find(parsed, **)));
value = strip(substr(parsed, find(parsed, **)));
output;
j.callBooleanMethod(*hasNext’, b);

end;
drop b parsed;

run;

A new registry entry may be added to the custom intake
registry file of intake registry files 316 (e.g., adi_custom_
reg.xml) to enable the described example. The registry
updates are illustrated in FIG. 9, which includes XML text
900, and are summarized below:

(1) Incoming file pattern 902—the file pattern for the

data sasext.custom_table; 55 JSON object o receive;
attrib id length=8; (2) File ID 904—unique ID (7) assigned to the JSON file
attrib name length=$50; to receive;
attrib age length=8; (3)b Filenam;: %g%}s?irlne. as incoming ﬁlg pattern 902
. o . . ' _¢ 60 ecause the € 1s not compressed,

’ 1nﬁ1e .&mcomlng_dlr/&dataﬁle dsd dlm=*, (4) FileType 908—set to “CUSTOM”,

Irec|=32767; .
. . (5) Extract_Script 910—a name of the custom extract
input id name age; script:

pt;

run; (6) Output_Table 912—an output table name for the
As another example, the custom extract script below 65 extract script to reference when extracting input; and

extracts data from a custom JavaScript object notation
(JSON) object using standard java libraries for JSON.

(7) Post_Process_Script 914—a name of a custom post_
process script.

US 9,483,477 B2

35

In operation 650, a default extractor is executed on the
selected source file. The default extractor may be imple-
mented in software (comprised of computer-readable and/or
computer-executable instructions) stored in second com-
puter-readable medium 308 and accessible by second pro-
cessor 310 for execution of the instructions that embody the
operations of the default extractor. The default extractor may
be written using one or more programming languages,
assembly languages, scripting languages, etc. The default
extractor may be executed/kicked off from a web applica-
tion. For illustration, if the selected source file is a comma
delimited file, for example, as indicated by the extension
“csv”, a default extractor is executed that extracts comma
delimited text. For illustration, if the selected source file is
a SAS dataset, for example, as indicated by the extension
“sas7bdat”, a default extractor is executed that extracts data
from a SAS dataset. For illustration, if the selected source
file is a pipe delimited file, for example, as indicated by the
extension “txt”, a default extractor is executed that extracts
pipe delimited text.

It a file extraction fails due to a data layout issue, a
corrected file can be sent again. The filename should match
the original filename.

In an operation 652, a determination is made concerning
whether or not the file is a partitioned file as defined in the
<PARTITIONED> field of the matching filename parameter
identified in operation 636. If the file is a partitioned file,
processing continues in an operation 654. If the file is not a
partitioned file, processing continues in an operation 656. In
operation 654, the partitioned files are appended.

In operation 656, a determination is made concerning
whether or not any data integrity test or tests is performed
based on the trigger file. If a data integrity test is performed,
processing continues in an operation 658. If a data integrity
test is not performed, processing continues in an operation
662.

In operation 658, the one or more data integrity tests are
performed. For example, one or more of a number of records
test, a begin date test, an end date test, a checksum test, etc.
is performed based on the fields defined in the trigger file, if
any, for the selected source file. The integrity test may be
performed by comparing the defined data integrity test value
read from a line of the trigger file to a test value determined
by reading the selected source file.

In operation 660, a determination is made concerning
whether or not any data integrity test or tests failed. If a data
integrity test failed, processing continues in operation 680.
If a no data integrity test failed, processing continues in
operation 662.

In operation 662, a determination is made concerning
whether or not any data quality test or tests is performed
based on the data layout description file. If a data quality test
is performed, processing continues in an operation 664. If a
data quality test is not performed, processing continues in an
operation 668.

In operation 664, the one or more data quality tests are
performed on each column read from the selected source file
based on the entries in the “extract_dq_rule” column for that
column (columns in the selected source file are defined as a
row of the data layout description file.

In operation 666, a determination is made concerning
whether or not any data quality test or tests failed. If a data
quality test failed, processing continues in operation 680. If
no data quality test failed, processing continues in operation
668.

In operation 668, any post-process program identified
from the <POST_PROCESS_SCRIPT> field value for the

20

25

30

40

45

55

60

65

36

matching second level parameters is executed. The post-
process program may be implemented in software (com-
prised of computer-readable and/or computer-executable
instructions) stored in second computer-readable medium
308 and accessible by second processor 310 for execution of
the instructions that embody the operations of the post-
process program. The post-process program may be written
using one or more programming languages, assembly lan-
guages, scripting languages, etc. The post-process program
may be implemented as a Web application. For illustration,
a post-process program can load data into a data base
management system, an in-memory server, into a Hadoop
file system, etc.

Table X provides an example of a list of macro variables
that may be available for a custom extract script, a pre-
process program, and/or a post-process program to use.

TABLE X

Macro Variable Description

&datafile Name of the source file

&project_cd Name of the project as defined in configuration file
314.

&triggerfile Name of the trigger file associated with the source
file

&incoming_ dir Directory in which the source file is extracted and is
available

&description Description of the source file from the custom intake
registry file

&file_ pattern File pattern from the custom intake registry file

&filetype Filetype from the custom intake registry file

&file_ delimiter
&output__table

File delimiter from the custom intake registry file
Name of the output table

&id Unique id per job to identify an individual job from
among parallel processes. This value may not be
unique across runs but may be unique for a single
run.

&dqdsn A data quality dataset name

In an operation 670, one or more of the status files 320 are
updated to indicate success or failure of the extraction from
the selected source file. One or more signal files can be
produced to communicate status/success/failure of data
intake back to data source device 102 or to downstream
processes in hosted data system 106.

In operation 672, a determination is made concerning
whether or not another file is included in a bundled file. If
another file is included in a bundled file, processing contin-
ues in operation 634 to select and process the next file. For
example, if data files 20080201.1405.PRD.account.txt and
20080201.1405 PRD.trans.txt are sent in a compressed tar
file, 20080201.1405.PRD.dailyfiles.tar.gz, the uncom-
pressed file 20080201.1405.PRD.trans.txt may be selected
next. If another file is not included in a bundled file,
processing continues in an operation 674.

In operation 674, the calendar table of control data 708 is
updated as needed to indicate a next expected receipt time
for the selected source file.

In operation 676, a determination is made concerning
whether or not another source file is present in the archive
location. If another file is present, processing continues in
operation 616 to select and process the next file. If another
file is not present, processing continues in operation 608 to
continue to monitor for expiration of any expected receipt
timers and storage of any new source data.

In operation 680, an error status file is updated. For
example, an error message may be generated in one of log
file A 320q, log file B 3205, or log file C 320c. In an
operation 682, an error notification email may be sent. For

US 9,483,477 B2

37

example, status and/or error messages 710 may be created
and sent to message locations predefined in configuration
file 314 based on a type of the message selected based on
which operation called operation 680. Processing may con-
tinue in either operation 608 or in an operation immediately
after the operation that called operation 680 depending on
whether or not the subsequent processing can continue based
on the error that occurred. For example, processing contin-
ues if errors happen during extraction of data unless a fatal
error (e.g., validation of custom registry fails) occurs, in
which case processing stops.

Processing through operations 600-684 continues until
processing is stopped as understood by a person of skill in
the art. As mentioned previously, multiple instances of
extraction module 704 may be executing in parallel. For
illustration, extraction module 704 may be executing opera-
tions 640 to 650.

Data intake application 312 provides a standardized pro-
cess to automate the intake of data, and all that entails
including archiving, encryption, data integrity/quality tests,
decryption, audit trail, error handling, notifications, etc. Data
intake application 312 further automates the extraction and
data quality processes for supported file types without any
need to write code or create jobs. The extraction and data
quality processes can either be ad hoc or scheduled. Data
intake application 312 provides one standardized component
to automate the loading and processing of ad hoc data,
sample data, and scheduled data. Traditionally, it has taken
manual intervention to set up these processes and to execute
some of these tasks. Data intake application 312 uses
configurable intake registry files to configure the automatic
data intake process to meet unique project needs, which
makes getting data into a hosted data system 106 a seamless
process.

Among other advantages, data intake application 312
further:

provides a standardized workflow, logging, audit trail;

supports immediate processing;

makes hosted end users (customers) self-sufficient and

makes data ingestion seamless to them;

supports immediate processing and utilization of data as

it is received, even if the file is sent in an ad-hoc
manner;

provides seamless paralleled processing of extracts when

multiple files exist;

provides automatic extraction of data saving many man

hours for coding ETL jobs; and

provides a calendar feature for scheduling and built in

alerting when schedules are not met.

The word “illustrative” is used herein to mean serving as
an example, instance, or illustration. Any aspect or design
described herein as “illustrative” is not necessarily to be
construed as preferred or advantageous over other aspects or
designs. Further, for the purposes of this disclosure and
unless otherwise specified, “a” or “an” means “one or
more”. Still further, using “and” or “or” in the detailed
description is intended to include “and/or” unless specifi-
cally indicated otherwise. The illustrative embodiments may
be implemented as a method, apparatus, or article of manu-
facture using standard programming and/or engineering
techniques to produce software, firmware, hardware, or any
combination thereof to control a computer to implement the
disclosed embodiments.

Some aspects may utilize the Internet of Things (IoT),
where things (e.g., machines, devices, phones, sensors) can
be connected to networks and the data from these things can
be collected and processed within the things and/or external

10

15

20

25

30

35

40

45

50

55

60

65

38

to the things. For example, with the [oT there can be sensors
in many different devices, and high value analytics can be
applied to identify hidden relationships and drive increased
efficiencies. This can apply to both Big Data analytics and
realtime (streaming) analytics.

The foregoing description of illustrative embodiments of
the disclosed subject matter has been presented for purposes
of illustration and of description. It is not intended to be
exhaustive or to limit the disclosed subject matter to the
precise form disclosed, and modifications and variations are
possible in light of the above teachings or may be acquired
from practice of the disclosed subject matter. The embodi-
ments were chosen and described in order to explain the
principles of the disclosed subject matter and as practical
applications of the disclosed subject matter to enable one
skilled in the art to utilize the disclosed subject matter in
various embodiments and with various modifications as
suited to the particular use contemplated.

What is claimed is:

1. A non-transitory computer-readable medium having
stored thereon computer-readable instructions that when
executed by a computing device control the computing
device to:

automatically read a registry file,

wherein the registry file includes a plurality of filename
parameters,

wherein each filename parameter of the plurality of
filename parameters identifies a matching filename
pattern,

wherein an extract script indicator and a read file
indicator are associated with each filename param-
eter,

wherein the extract script indicator indicates an extract
script for a file having a filename that matches the
matching filename pattern,

wherein the read file indicator indicates how to read the
file having the filename that matches the matching
filename pattern;

automatically determine whether unprocessed source data

is stored in a predefined directory;

based upon determining that unprocessed source data is

stored in the predefined directory,

automatically select a source file from the unprocessed
source data;

automatically select one parameter of the plurality of
filename parameters read from the registry file by
matching a filename of the selected source file to the
matching filename pattern of the one parameter;

determine whether the selected source file is expected
based on a time parameter read from the registry file
in association with the selected one parameter;

based upon determining that the selected source file is
not expected based on the time parameter, update an
error status file to include a first error message;

automatically select the extract script based on the
extract script indicator associated with the selected
one parameter;

automatically read data from the selected source file
using the selected extract script and using the read
file indicator associated with the selected one param-
eter; and

automatically output the read data to a different file than
the source file;

determine whether a trigger file for the selected source file

is stored in the predefined directory; and

based upon determining that the trigger file for the

selected source file is stored in the predefined directory,

US 9,483,477 B2

39

read the trigger file to define a data integrity test value
for the selected source file;
perform an integrity test by comparing the defined data
integrity test value to a test value determined from
the read data;
determine whether the performed integrity test fails;
and
based upon determining that the performed integrity
test fails, update the error status file to include a
second error message.
2. The non-transitory computer-readable medium of claim
1, wherein the extract script for a first file having a first
filename that matches a first matching filename pattern is
different from the extract script for a second file having a
second filename that matches a second matching filename
pattern.
3. The non-transitory computer-readable medium of claim
1, wherein the extract script indicator associated with the
selected one parameter is blank indicating that the selected
extract script is a default extractor.
4. The non-transitory computer-readable medium of claim
1, wherein, before determining whether the trigger file for
the selected source file is stored in the predefined directory,
the computer-readable instructions further control the com-
puting device to:
automatically read a partitioned indicator associated with
the selected one parameter and read from the registry
file, wherein the partitioned indicator indicates whether
or not the selected source file is part of a plurality of
files that have been partitioned;
based upon determining that the selected source file is part
of the plurality of files, automatically determine
whether or not all of the plurality of files are stored in
the predefined directory; and
based upon determining that all of the plurality of files are
stored in the predefined directory and based upon
determining that the trigger file for the selected source
file is stored in the predefined directory, append the
plurality of files to create a single file.
5. The non-transitory computer-readable medium of claim
4, wherein the integrity test is performed on the created
single file.
6. The non-transitory computer-readable medium of claim
1, wherein the registry file further includes a second-level
filename parameter associated with each filename parameter
of the plurality of filename parameters,
wherein each second-level filename parameter identifies a
second matching filename pattern,
wherein the extract script indicator and the read file
indicator are associated with the second-level filename
parameter associated with each filename parameter of
the plurality of filename parameters.
7. The non-transitory computer-readable medium of claim
6, wherein at least one filename parameter of the plurality of
filename parameters includes a plurality of second-level
filename parameters associated with the at least one filename
parameter.
8. The non-transitory computer-readable medium of claim
1, wherein the read data is output to a second predefined
directory different from the predefined directory,
wherein the predefined directory and the second pre-
defined directory are defined in a configuration file
before automatically determining whether the unpro-
cessed source data is stored in the predefined directory.

10

15

20

25

30

35

40

45

50

55

60

40

9. The non-transitory computer-readable medium of claim
1, wherein the read data is output to a different, non-
transitory computer-readable medium of a different comput-
ing device.

10. The non-transitory computer-readable medium of
claim 1, wherein the read data is further automatically output
in a different format than a format used in the source file.

11. The non-transitory computer-readable medium of
claim 10, wherein the computer-readable instructions further
control the computing device to:

determine whether a data layout description file for the

selected source file is stored in the predefined directory;
and

based upon determining that the data layout description

file for the selected source file is stored in the pre-
defined directory, read a data output description from
the data layout description file, wherein the different
format is based at least partially on the read data output
description.

12. The non-transitory computer-readable medium of
claim 11, wherein the data output description includes at
least one of a table name, a field order indicator, a column
label indicator, a field type indicator, a field format indicator,
and a field length indicator.

13. The non-transitory computer-readable medium of
claim 1, wherein the data integrity test value is selected from
the group consisting of a number of records, a checksum
value, and a modification date.

14. The non-transitory computer-readable medium of
claim 1, wherein the computer-readable instructions further
control the computing device to:

determine whether a data layout description file for the

selected source file is stored in the predefined directory;
and

based upon determining that the data layout description

file for the selected source file is stored in the pre-

defined directory,

read the data layout description file to define a data
quality test for the selected source file;

perform the defined data quality test on the read data;

determine whether the performed, defined data quality
test fails; and

based upon determining that the performed, defined
data quality test fails, send an error notification
message to a predefined address.

15. The non-transitory computer-readable medium of
claim 14, wherein a first data quality test is defined for a first
column of the read data, and a second data quality test is
defined for a second column of the read data, wherein the
first data quality test is different from the second data quality
test.

16. The non-transitory computer-readable medium of
claim 14, wherein the data quality test is selected from the
group consisting of a test on a range of values, a test for a
null value, a test for a predefined data type, a test for only
digits, a test for only characters, a test for only alphanumeric
characters, a test for only values in a list, and a test for only
values in a table.

17. The non-transitory computer-readable medium of
claim 1, wherein the computer-readable instructions further
control the computing device to:

determine whether a data layout description file for the

selected source file is stored in the predefined directory;
and

based upon determining that the data layout description

file for the selected source file is stored in the pre-
defined directory,

US 9,483,477 B2

41

read a data layout description from the data layout
description file; and

read the data from the selected source file also using the
read data layout description.

18. The non-transitory computer-readable medium of
claim 17, wherein the computer-readable instructions further
control the computing device to:

based upon determining that the data layout description

file for the selected source file is not stored in the

predefined directory,

read a common data layout description from a common
data layout description file; and

read the data from the selected source file also using the
read common data layout description.

19. The non-transitory computer-readable medium of
claim 1, wherein, before automatically reading the data, the
computer-readable instructions further control the comput-
ing device to automatically decompress the selected source
file based on a compression indicator associated with the
selected one parameter.

20. The non-transitory computer-readable medium of
claim 1, wherein, before automatically reading the data, the
computer-readable instructions further control the comput-
ing device to automatically decrypt the selected source file
based on an encryption indicator associated with the selected
one parameter.

21. The non-transitory computer-readable medium of
claim 1, wherein the computer-readable instructions further
control the computing device to:

automatically select a pre-process program based on a

pre-process program indicator associated with the
selected one parameter; and

automatically execute the selected pre-process program

with the selected source file before automatically read-
ing the data from the selected source file.

22. The non-transitory computer-readable medium of
claim 1, wherein the computer-readable instructions further
control the computing device to:

automatically select a post-process program based on a

post-process program indicator associated with the
selected one parameter; and

automatically execute the selected post-process program

with the selected source file after determining whether
the trigger file for the selected source file is stored in the
predefined directory.

23. The non-transitory computer-readable medium of
claim 1, wherein the read file indicator is selected from the
group consisting of a file type indicator, a delimiter type
indicator, a first observation indicator, an encryption indi-
cator, a compression indicator, a partitioned file indicator, a
field type indicator, a field format indicator, and a field
length indicator.

24. The non-transitory computer-readable medium of
claim 1, wherein the trigger file is identified based on a
prefix of the filename of the selected source file and an
extension specified by a trigger file extension indicator
associated with the selected one parameter and read from the
registry file.

25. The non-transitory computer-readable medium of
claim 1, wherein the computer-readable instructions further
control the computing device to:

automatically read a second registry file before automati-

cally selecting the extract script when the filename of

the selected source file does not match any matching

filename pattern of the plurality of filename parameters,

wherein the second registry file includes a second
plurality of filename parameters,

10

20

25

30

40

45

50

55

60

65

42

wherein each filename parameter of the second plural-
ity of filename parameters identifies a second match-
ing filename pattern,

wherein a second extract script indicator and a second
read file indicator are associated with each filename
parameter of the second plurality of filename param-
eters,

wherein the second extract script indicator indicates an
extract script for a file having a filename that
matches the second matching filename pattern,

wherein the second read file indicator indicates how to
read the file having the filename that matches the
second matching filename pattern; and

automatically select the one parameter of the second

plurality of filename parameters read from the second

registry file by matching the filename of the selected

source file to the second matching filename pattern of

the one parameter.

26. The non-transitory computer-readable medium of
claim 1, wherein the registry file is selected based on a prefix
of the filename of the selected source file.

27. The non-transitory computer-readable medium of
claim 1, wherein the computer-readable instructions further
control the computing device to:

based upon determining that the selected source file is not

expected based on the time parameter, send the first
error message to a predefined address.

28. The non-transitory computer-readable medium of
claim 1, wherein the computer-readable instructions further
control the computing device to,

when unprocessed source data is not stored in the pre-

defined directory, determine whether an expected
receipt time has expired; and

based upon determining that the expected receipt time has

expired, send an error notification message to a pre-
defined address.

29. A computing device comprising:

a processor; and

a non-transitory computer-readable medium operably

coupled to the processor, the computer-readable
medium having computer-readable instructions stored
thereon that, when executed by the processor, control
the computing device to
automatically read a registry file,
wherein the registry file includes a plurality of file-
name parameters,
wherein each filename parameter of the plurality of
filename parameters identifies a matching file-
name pattern,
wherein an extract script indicator and a read file
indicator are associated with each filename param-
eter,
wherein the extract script indicator indicates an
extract script for a file having a filename that
matches the matching filename pattern,
wherein the read file indicator indicates how to read
the file having the filename that matches the
matching filename pattern;
automatically determine whether unprocessed source
data is stored in a predefined directory;
based upon determining that unprocessed source data is
stored in the predefined directory,
automatically select a source file from the unpro-
cessed source data;
automatically select one parameter of the plurality of
filename parameters read from the registry file by

US 9,483,477 B2

43

matching a filename of the selected source file to
the matching filename pattern of the one param-
eter;

determine whether the selected source file is
expected based on a time parameter read from the
registry file in association with the selected one
parameter;

based upon determining that the selected source file
is not expected based on the time parameter,
update an error status file to include a first error
message;

automatically select the extract script based on the
extract script indicator associated with the
selected one parameter;

automatically read data from the selected source file
using the selected extract script and using the read
file indicator associated with the selected one
parameter; and

automatically output the read data to a different file
than the source file;

determine whether a trigger file for the selected source
file is stored in the predefined directory; and
based upon determining that the trigger file for the

selected source file is stored in the predefined direc-

tory,

read the trigger file to define a data integrity test
value for the selected source file;

perform an integrity test by comparing the defined
data integrity test value to a test value determined
from the read data;

determine whether the performed integrity test fails;
and

based upon determining that the performed integrity
test fails, update the error status file to include a
second error message.

30. A method of automatically processing data received
from a first computing device for use on a second computing
device, the method comprising:

automatically reading, by a first computing device, a

registry file,

wherein the registry file includes a plurality of filename
parameters,

wherein each filename parameter of the plurality of
filename parameters identifies a matching filename
pattern,

wherein an extract script indicator and a read file
indicator are associated with each filename param-
eter,

wherein the extract script indicator indicates an extract
script for a file having a filename that matches the
matching filename pattern,

10

15

20

25

30

35

40

45

50

44

wherein the read file indicator indicates how to read the
file having the filename that matches the matching
filename pattern;
automatically determining, by the first computing device,
whether unprocessed source data is stored in a pre-
defined directory;
based upon determining that unprocessed source data is
stored in the predefined directory,
automatically selecting, by the first computing device,
a source file from the unprocessed source data;
automatically selecting, by the first computing device,
one parameter of the plurality of filename parameters
read from the registry file by matching a filename of
the selected source file to the matching filename
pattern of the one parameter;
determining, by the first computing device, whether the
selected source file is expected based on a time
parameter read from the registry file in association
with the selected one parameter;
based upon determining that the selected source file is
not expected based on the time parameter, updating,
by the first computing device, an error status file to
include a first error message;
automatically selecting, by the first computing device,
the extract script based on the extract script indicator
associated with the selected one parameter;
automatically reading, by the first computing device,
data from the selected source file using the selected
extract script and using the read file indicator asso-
ciated with the selected one parameter; and
automatically outputting, by the first computing device,
the read data to a different file than the source file;
determining, by the first computing device, whether a
trigger file for the selected source file is stored in the
predefined directory; and
based upon determining that the trigger file for the
selected source file is stored in the predefined directory,
reading, by the first computing device, the trigger file to
define a data integrity test value for the selected
source file;
performing, by the first computing device, an integrity
test by comparing the defined data integrity test
value to a test value determined from the read data;
determining, by the first computing device, whether the
performed integrity test fails; and
based upon determining that the performed integrity
test fails, updating, by the first computing device, the
error status file to include a second error message.

#* #* #* #* #*

